Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Approach to Global Health Challenges

Published: Friday, September 27, 2013
Last Updated: Friday, September 27, 2013
Bookmark and Share
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.

MIT’s new Institute for Medical Engineering and Science (IMES) is tackling some of the world’s biggest health challenges through an interdisciplinary approach that will seek new ways to diagnose and treat infectious, neurological and cardiovascular diseases.

Solving those challenges will require bringing together many types of expertise, said MIT President L. Rafael Reif, who urged researchers to “be bold, think big, and save the world” at an inaugural symposium, held Sept. 25, to celebrate IMES’s launch.

The new institute aims to become a hub for medical research, IMES director Arup Chakraborty said, allowing MIT scientists and engineers to work more closely with hospitals, medical-device manufacturers, and pharmaceutical companies in the Boston and Cambridge area.

“We aim to serve as a strong integrative force across the MIT campus and bring together our work in discovery, innovation and entrepreneurship and partner with hospitals, Harvard Medical School and industry to create the future of medicine and health care. There is no better location in the world than here to try and do this,” said Chakraborty, the Robert T. Haslam Professor of Chemical Engineering, Chemistry, Physics and Biological Engineering at MIT.

IMES, which is now home to the Harvard-MIT Division of Health Sciences and Technology (HST), will also train the next generation of innovators at both the graduate and undergraduate levels. IMES will add a new program with the MIT Sloan School of Management and a new curriculum in health-care informatics, said Emery Brown, associate director of IMES. “We’re going to expand on what is already a 40-year success with the HST program with Harvard Medical School,” said Brown, the Edward Hood Taplin Professor of Medical Engineering at MIT.

IMES also includes MIT’s Medical Electronic Device Realization Center, which is devoted to developing new medical devices for diagnosis and disease monitoring, in collaboration with industrial partners.

Grand challenges

Speakers at the symposium outlined some of the health challenges now facing the world and offered thoughts on how to tackle them.

Gregory Petsko, a professor of neurology and neuroscience at Weill Cornell Medical College, said that as life spans continue to increase around the world, more and more people will suffer from neurological disorders such as Alzheimer’s disease. “The older you get, the greater your risk for one of the major neurodegenerative diseases,” he said.

There are now 5 million people with Alzheimer’s in the United States, a figure that is expected to grow to nearly 14 million by 2050. At the same time, the worldwide total is projected to reach 100 million.

Petsko, who described potential drugs he is developing to interfere with the formation of Alzheimer’s plaques, said he and other scientists need help from engineers to find optimal ways to deliver their drugs to the brain. Engineers can also lend their expertise in designing devices that can test for disease biomarkers that scientists may discover in the future, he said.

“This is a problem that largely is going to have to have engineering solutions. We have to find biomarkers, but there have to be ways to identify those markers in living people inexpensively and, in some cases, rapidly,” Petsko said.

Trevor Mundel, president of the global health program at the Bill and Melinda Gates Foundation, said he hopes the foundation and IMES will have opportunities to work together.

“I see a lot of synergies and intersections between IMES and the Gates Foundation,” Mundel said. “At the high level, we both want to have real impact and do things in the real world, not just be theoretical and have some abstract discussions.”

Mundel said that when creating new technology for developing countries, it is critical to be aware of the local environment and the needs of the people living there. For example, a recently deployed diagnostic device for tuberculosis turned out to be ill-suited to remote clinics because it took too long to produce a result.

“We had in mind a profile of what was really needed, and what we got out was not quite there. What I have found out is that ‘not quite there,’ in these infrastructure-poor areas, is not there at all,” Mundel said. “The global-health community all too often produces products which were almost there, but they’re not good enough for the countries and the infrastructure where they actually need to be deployed.”

Building bridges across disciplines

While IMES is breaking new ground, it is also building on a long history of medical research at MIT. In 2011, Reif, then MIT’s provost, asked a faculty committee to examine the future of HST, established in 1969 to train physician-scientists.

The committee found that while many scientists and engineers at MIT were working on projects together, these efforts were not centrally organized. Furthermore, MIT was not taking full advantage of its close proximity to nearby world-class hospitals. IMES was established in July 2012 to formalize and strengthen those connections.

“We needed a structure that would allow MIT and its clinical colleagues to make the most of each other’s strengths, working together on the most important problems and seizing opportunities to drive systemic change,” Reif said at yesterday’s symposium.

In establishing IMES, Chakraborty and others drew inspiration from the Koch Institute for Integrative Cancer Research at MIT and the Ragon Institute of Harvard, MIT and Massachusetts General Hospital.

Bruce Walker, director of the Ragon Institute, said he launched that institute, whose mission is to develop HIV vaccines, because he had become frustrated with the isolated nature of most HIV research. It was difficult to bring in scientists or engineers from outside the field and even harder to obtain funding for innovative interdisciplinary projects, he told symposium attendees.

“Our feeling was the full toolbox had never really been applied to the HIV problem, and my sense from interactions with the Broad Institute and others that I had begun to get engaged with here was that we could really accelerate progress if we could get more engineers and physicists and computational biologists to come to the table,” Walker said.

Likewise, Koch Institute director Tyler Jacks wanted to bring new perspectives and expertise to MIT’s research on cancer. In 2010, cancer biologists and engineers moved into a new Koch Institute building, which is designed to foster chance interactions and new collaborations, Jacks said.

Making sure that scientists and engineers have ample opportunities to talk about their research and learn the language of other fields is key to successful collaborations, Jacks said.

“I sometimes describe this place like Ellis Island,” he said. “You’ve got people bumping into each other who don’t speak the same language. Chemical engineers have to talk to molecular biologists. Mechanical engineers have to talk to cell biologists. This takes some effort, and we’ve worked quite hard to try to enable better communication and education among the people who are experiencing the Koch Institute.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
Microscopic “Walkers” Find Their Way Across Cell Surfaces
Technology could provide a way to deliver probes or drugs to cell structures without outside guidance.
Thursday, October 23, 2014
Stress-Induced Hormone Primes Brain for PTSD
MIT study finds that ghrelin, produced during stressful situations, primes the brain for post-traumatic stress disorder.
Wednesday, October 16, 2013
New Kind of Microscope uses Neutrons
Device could open up new areas of research on materials and biological samples at tiny scales.
Friday, October 04, 2013
Microfluidic Platform Gives a Clear Look at a Crucial Step in Cancer Metastasis
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Friday, September 27, 2013
Watching Tumors Burst Through a Blood Vessel
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Tuesday, September 24, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Researchers Reverse Fragile X Syndrome Symptoms in Adult Mice
Picower Institute neuroscientists use single dose of experimental drug; could prove promising for treatment of autism symptoms.
Tuesday, March 26, 2013
Chemists Find Help from Nature in Fighting Cancer
Study of several dozen compounds based on a fungal chemical shows potent anti-tumor activity.
Thursday, February 28, 2013
Bringing a New Perspective to Infectious Disease
Enlisted in the fight against HIV, MIT engineers and scientists contribute new technology, materials and computational studies.
Thursday, February 07, 2013
A Safer Way to Vaccinate
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.
Monday, January 28, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos