Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Researchers Identify Candidate Drug to Treat Batten Disease

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
The drug, tested in mice, was found to slow the loss of coordination seen in the disorder extending the animals’ life span.

Researchers at the National Institutes of Health have identified a potential new drug that could help in the treatment of a form of Batten disease, a fatal childhood disorder. 

The drug is derived from hydroxylamine, a molecule chemically similar to ammonia. Hyroxylamine is toxic, but a slight change in the molecule’s chemical structure results in a non-toxic molecule, called NtBuHA, short for N-(tert-Butyl-Hydroxylamine).

The term Batten disease refers to a group of disorders resulting in deterioration of the nervous system. These disorders occur in 1 of every 12,500 births, according to the study authors.

“The NIH researchers have found a promising lead for treating a devastating disease that has defied all attempts to treat it,” said Constantine A. Stratakis, M.D., director of the Division of Intramural Research at the NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development.

The researchers hope NtBuHA will be useful for treating a particular subtype of the disease, infantile Batten disease. With infantile Batten disease, children appear normal at birth, but experience a gradual, but steady, loss of brain tissue. By 11 to 18 months, they experience difficulty with physical coordination and begin to lose their vision. By age 4, they go blind and have no apparent brain activity. They may live in a vegetative state for several more years before dying.

Children with infantile Batten disease have a genetic deficiency of an enzyme, PPT1 (palmitoyl-protein thioesterase-1). Ordinarily PPT1 breaks down ceroid, a waxy substance. Without PPT1, ceroid builds up in brain cells, and results in infantile Batten disease. The researchers knew that the compound hydroxylaminemimics the function of the PPT1 enzyme. However, the compound is also toxic. After testing a panel of chemically modified hydroxylamines, they found that NtBuHA could mimic PPT1 in cultured cells from infantile Batten patients, preventing the waxy buildup, but without hyroxylamine’s toxic effects.

Next, the researchers tested NtBuHA on a strain of mice genetically modified to lack the PPT1 enzyme. They added NtBuHA to the animals’drinking water and found that it reached the animals’ brains, where it broke down and depleted the waxy deposits. Although NtBuHA did not prevent all of the damage that typically occurs in the mouse form of the disease, the waxy buildup was greatly reduced in the treated mice as compared to the untreated mice. The researchers found that NtBuHA protected the neurons in the animals’ brains, slowed the deterioration in motor coordination and extended the animals’ life span.

“We hope to test NtBuHA as a possible therapy for infantile Batten disease,” said senior author Anil B. Mukherjee, M.D., Ph.D., head of the Section on Developmental Genetics at the NICHD. The researchers are currently working to gain the approval required for testing such new drugs in clinical trials with patients.

Dr. Mukherjee collaborated with first author Chinmoy Sarkar, Ph.D., Goutam Chandra, Ph.D., Shyiong Peng, Ph.D., Zhongjian Zhang, M.D., Ph.D., and Aiyi Liu, Ph.D., all colleagues at the NICHD.

Their findings appear in Nature Neuroscience.

Dr. Mukherjee and his colleagues are currently evaluating two other drugs, Cystagon and Mucomyst, for the treatment of patients with infantile Batten disease. Like NtBuHA, these drugs also break down the waxy deposits in the disease. It is possible that combining multiple drugs with activity against ceroid may one day provide a more effective treatment against these disorders, Dr. Mukherjee added.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
NIH Awards Nearly $35 Million to Research Natural Products
Innovative Research Centers Program investigates botanical dietary supplements and other natural products.
Thursday, September 10, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
HIV can Spread Early, Evolve in Patients' Brains
Findings add urgency to screening, treatment - NIH-funded study.
Saturday, March 28, 2015
Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Thursday, August 21, 2014
NIH Names New Clinical Sites in Undiagnosed Diseases Network
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.
Wednesday, July 02, 2014
Underlying Genetics and Marker For Stroke Discovered
NIH-funded findings point to new potential strategies for disease prevention, treatment.
Friday, March 21, 2014
Scientific News
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Inroads Against Leukemia
Potential for halting disease in molecule isolated from sea sponges.
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Multi-Gene Test Enables Some Breast Cancer Patients to Safely Avoid Chemotherapy
A major study is providing the best evidence to date that a 21-gene test done on the tumor can identify breast cancer patients who can safely avoid chemotherapy.
Antidepressants Plus Blood-Thinners Slow Down Brain Cancer
EPFL scientists have found that combining antidepressants with anticoagulants slows down brain tumors (gliomas) in mice.
Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos