Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Link Between Obesity and Diabetes Found

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.

A single overactive enzyme worsens the two core defects of diabetes—impaired insulin sensitivity and overproduction of glucose—suggesting that a drug targeting the enzyme could help correct both at once, according to mouse studies done by researchers at Columbia University Medical Center.  The findings were published today in the online edition of Cell Metabolism.

A drug that inhibits the enzyme, MK2, eventually could be added to metformin—the current first-line treatment for type 2 diabetes—to achieve better control over insulin and glucose levels than is possible with either drug alone, said the researchers.

“MK2’s compatibility with metformin makes it a very exciting potential drug target,” said Ira Tabas, MD, PhD, Richard J. Stock Professor and Vice Chair of Research in the Department of Medicine and professor of anatomy & cell biology (in physiology and cellular biophysics), who led the study with Lale Ozcan, PhD, associate research scientist.

“The one clear leader among drugs currently available for type 2 diabetes is metformin, which does a pretty good job of attacking both problems. But because metformin is often not enough, we need drugs that can be added to metformin—or used in patients who cannot tolerate metformin,” Dr. Tabas said. “If you take an obese, diabetic mouse and give it metformin, you get a partial improvement. If you give it an MK2-inhibitor, you also get a partial improvement. However, if you give both, the benefit is additive, which is consistent with our data that metformin and MK2 work through different biochemical pathways.”

The researchers’ earlier findings, on MK2’s effects on glucose, were published last year in the same journal.

Though both papers report the biochemical details of how MK2 works in mice, Drs. Tabas and Ozcan, working with surgeons Marc Bessler, MD, and Beth Schrope, MD, PhD, surgeons from NewYork-Presbyterian Hospital/Columbia University medical Center, also have recent unpublished data suggesting that MK2 is overactive in obese people, including those with pre-diabetes, but not in lean people. Moreover, the MK2 pathway is active in human liver cells, and, according to a large human genetic study called DIAGRAM, a key component of the pathway that activates MK2 is associated with diabetes.

About 25.8 million people in the U.S. and 347 million people worldwide have diabetes (mostly type 2). According to the Centers for Disease Control and Prevention, each year, about 6 percent of people with pre-diabetes develop type 2 diabetes; unless they make lifestyle changes, about 15 to 30 percent will develop diabetes within five years. “In addition to improving insulin sensitivity and glucose levels, our data suggest to us that a drug that inhibits MK2 could prevent the progression of pre-diabetes to full diabetes,” Dr. Tabas said.

Such a drug could protect the cells that produce insulin. “As the disease progresses, the insulin-producing cells have to put out more and more insulin to deal with the ever-increasing amounts of glucose in the bloodstream. Eventually, they burn out and the patient must use insulin,” Dr. Tabas said. “If we can protect the pancreas’s beta cells from the stress of dealing with high glucose, we may be able to prevent or delay progression to full diabetes.”

Drs. Tabas and Ozcan are planning to test this hypothesis with pre-diabetic mice.

Inhibiting MK2 also reduces cholesterol

Unpublished data from Drs. Tabas and Ozcan also suggest that MK2 inhibitors may not carry the cardiovascular risks associated with several newer diabetes drugs. Because of these risks, the FDA will not approve a new diabetes drug unless it has been found to be safe in large clinical trials designed to detect cardiovascular risk.

The Columbia researchers’ mouse studies show that MK2 inhibition reduces cholesterol, and other researchers have found that MK2 deficiency in mice protects against atherosclerosis. “A drug that inhibits MK2 may not just be heart-safe, but may actually be cardio-protective,” Dr. Tabas said.

He and Dr. Ozcan have created a company to develop compounds able to inhibit MK2.

“As with all drug development, it’s a long shot, but we think MK2 is less of a long shot than most.”

Drs. Tabas’ and Ozcan’s paper is titled, “Activation of Calcium/Calmodulin-Dependent Protein Kinase II in Obesity Mediates Suppression of Hepatic Insulin Signaling.”

This work was supported by NIH grants HL087123 and HL075662; American Heart Association Scientist Development Grant 11SDG5300022; NYONRC Pilot and Feasibility Grant DK26687; FAPESP/BEPE 2012/21290-4; German Center for Cardiovascular Research; the German Ministry of Education and Research; Deutsche Forschungsgemeinschaft BA 2258/2-1; European Commission FP7-Health-2010; and MEDIA-261409.  The basic science at the foundation of this work is part of a large NIH-sponsored program undertaken with two other CUMC professors, Domenico Accili, MD, and Alan Tall, MD, who have provided valuable guidance throughout these studies.

Drs. Ozcan and Tabas are among the co-founders of Tabomedex Biosciences LLC, which is developing inhibitors of the pathway described above for treatment of type 2 diabetes. The authors declare no additional financial or other conflicts of interest.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Stem Cells Converted to Functional Lung Cells
Possibility of generating lung tissue for transplant using a patient’s own cells.
Thursday, December 05, 2013
Scientific News
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Using Gene-editing Technology for Faster, Cheaper Antiviral Drug Development
UCLA scientists are working to develop special screening libraries based on a gene-editing technology called CRISPR.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!