Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novel Cancer Cell DNA Damage Repair Mechanism

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
Findings result from application of the cell microarray screening method developed at VTT.

Cancer cells have an exceptional ability to repair damage to their DNA caused during uncontrolled cell division. Scientists have now unveiled a novel piece of the puzzle of cancer cell DNA repair mechanisms that explain the mechanistic changes in the genetic code of cancer cells.

Research with a material impact on cancer drug development was published in Science magazine on 5 December 2013.

The new findings explain partially why cancer cells, unlike normal cells, fail to die as a result of DNA damaging insults, and how this mechanism causes new genetic mutations in cancer cells. This new information directly benefits cancer research.

Now that scientists understand the repair mechanism, they are better equipped to develop drug therapies that specifically target cancerous cells.

The discovered DNA repair mechanism has previously not been described in human or mammalian cells. Cancer cells use the mechanism to repair DNA damage resulting from uncontrolled DNA replication forced by activated oncogenes.

The genes that participate in the DNA repair mechanism were discovered by Juha Rantala, Senior Scientist at VTT, and Thanos Halazonetis, Coordinator of the EU-funded GENICA (Genomic instability in cancer and pre-cancer) project, with the cell microchip screening method developed by Rantala in 2010. Based on gene silencing, the method allows a single microchip to screen the functions of tens of thousands of genes simultaneously.

This finding was preceded by years of research cooperation begun by Juha Rantala, Senior Scientist, and Professor Olli Kallioniemi (currently Director of the Finnish Institute of Molecular Medicine) from VTT and Professor Thanos Halazonetis (the University of Geneva). Thomas Helleday's research team at the Karolinska Institutet also participated in the research published in Science magazine.

The research was part of the EU's GENICA project aimed at discovering why the DNA damage sustained by cancer cells in the early stages of the disease fails to result in the programmed cell death associated with normal cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

European Research Project Aims at Early Diagnosis of Memory Disorders
800 patients to participate in testing new diagnostic procedures.
Thursday, March 20, 2014
VTT and GE Healthcare Developing Novel Biomarkers to Predict Alzheimer’s Disease
VTT and University of Eastern Finland scientists have discovered a serum biochemical signature.
Wednesday, June 27, 2012
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Small Molecules Lead to Big Change in Reaction Outcomes
Scientists have changed the behaviour of a group of molecules involved in carbon-oxygen bond synthesis.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Sanger Institute, St Jude Data-Sharing Agreement
Childhood cancer targeted by Sanger Institute and St Jude Children’s Research Hospital exchanges of cancer data
Over Two-Thirds of Cervical Cancer Deaths Prevented
Cervical screening prevents 70% of cervical cancer deaths and if all eligible women regularly attended screening this would rise to 83%.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
Uncovering the Genetics Behind High Blood Pressure
Results suggest a role for blood vessels themselves in controlling blood pressure.
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!