Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

3D Biomatrix Announces Allowance of U.S. Patent

Published: Thursday, February 06, 2014
Last Updated: Thursday, February 06, 2014
Bookmark and Share
Cell culture technology uniquely addresses 3D spheroid and embryoid body growth challenges.

3D Biomatrix, Inc. announce the Notice of Allowance of its U.S. Patent for technology included in the Perfecta3D  Hanging Drop Plates, a novel platform that makes 3D spheroid and embryoid body growth, along with an array of co-cultures, simple and inexpensive to perform. The patent entitled “Hanging Drop Devices, Systems and/or Methods” covers several core technologies: 

• The development of a complete hanging drop system that allows the performance of cell analysis in individual hanging drops within a standard 96- or 384-well platform. 

• The specific design of the Perfecta3D Hanging Drop Plate, which allows the growth of one spheroid or embryoid body per well without adherence to a plastic surface or other substance. 

• The inclusion of a water or media reservoir that acts as a humidity source to alleviate the commonly-encountered hanging drop evaporation problem. 

Researchers have long tested drug compounds and other factors affecting cell growth on flat surfaces in two dimensions (2D), but 2D cell cultures do not accurately represent how cells behave in the three-dimensional body. 3D cell cultures grown in the Perfecta3D Hanging Drop Plates allow researchers to recapitulate these characteristics in vitro, providing a more physiologically-relevant model. 3D Biomatrix’s Hanging Drop Plates facilitate the consistent and controllable growth of small spherical cellular 3D clusters in a well-plate format, allowing researchers to test compounds and other factors in a 3D environment that reflects the human body. 

3D Biomatrix and the University of Michigan are listed as the assignees of the patent. 3D Biomatrix holds an exclusive license for worldwide rights to the intellectual property covered by this patent. The inventors of the Perfecta3D technology include Shuichi Takayama, a professor having a joint appointment in the Department of Biomedical Engineering and Macromolecular Science and Engineering at the University of Michigan, Yi-Chung Tung, Amy Yu-Ching Hsiao and Edward Jan. Dr. Takayama is a member of 3D Biomatrix’s Scientific Advisory Board. 

“The allowance of this patent is an important milestone, and we will continue to expand our IP portfolio. Life science and drug discovery researchers want more relevant tools in their toolbox. Although the hanging drop technology has been used for decades, the available techniques were difficult to use making it challenging to reproduce results consistently. The 96- and 384-well Perfecta3D Hanging Drop Plates make spheroid growth, long- and short-term cultures, and expansive co-culture models simple to perform and reproduce in 3D,” said 3D Biomatrix CEO Laura Schrader.

"Our worldwide customers include researchers in academia performing cell biology, cancer and stem cell research as well as leading pharmaceutical companies who want to reduce the drug attrition rate by getting more relevant answers earlier in their research process along with the ability to perform high-content analysis and high-throughput screening,” concluded Schrader.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3D Biomatrix and Cayman Chemical Partner
Companies have partnered to develop and supply a novel assay kit for measuring the viability of cells growing in three-dimensional (3D) spheroids.
Monday, November 25, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos