Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Berg, Parkinson’s Institute Announce Study Focused on Biomarker Discovery

Published: Thursday, February 20, 2014
Last Updated: Wednesday, February 26, 2014
Bookmark and Share
Third phase of collaboration aims to unravel mysteries of disease by identifying disease markers and potential new drug targets.

Berg and the Parkinson’s Institute and Clinical Center announce the next phase in their ongoing partnership, focused on identifying potential biomarkers that may lead to breakthroughs in the research, diagnosis, and treatment of Parkinson’s disease. Using Berg’s Interrogative Biology™ platform to analyze multi-omic tissue samples (skin fibroblasts, blood, urine) supplied by the Parkinson’s Institute, this collaboration will identify the differences between healthy and diseased tissues in an effort to unravel the mysteries of Parkinson’s disease. Berg and the Parkinson’s Institute together are the first teams to approach biomarker discovery by looking at proteomics, metabolomics, and lipidomics, in addition to clinical data, simultaneously in human patients and controls from the same cohort.

The new clinical study launched at the Parkinson’s Institute and Clinical Center will collect urine, blood, and other relevant tissue samples from people living with Parkinson’s disease. These materials will be used to validate biomarker candidates identified previously from the collaboration. Most importantly, this will represent a first in merging patients’ molecular and clinical information to develop profiles that will drive the development of biomarkers.

Berg is a biopharmaceutical company committed to uncovering health solutions through a data-driven, biological research approach. The Parkinson’s Institute is America’s only independent, non-profit organization that brings together world-class care, laboratory research, clinical research, and clinical trials for Parkinson’s disease under one roof.

“This partnership harnesses the exceptional clinical expertise and superior research resources of the Parkinson’s Institute, along with Berg’s unique ability to integrate patient-specific molecular data with clinical and demographic information,” said Niven R. Narain, Co-Founder, President and Chief Technology Officer of Berg. “This new and exciting phase of our collaboration has the potential to create a number of game-changing innovations to better diagnose and manage Parkinson’s disease.”

Parkinson’s disease is a progressive movement-related disorder of the central nervous system. It is estimated that there are approximately one million Americans living with Parkinson’s. Each year, 50,000 new cases are diagnosed, and this rate is expected to rise with the aging baby boomer population. A clear understanding of Parkinson’s and its underlying pathophysiology continues to be elusive as a result of the disease’s complexity and a lack of predictive capability among existing models.

The expectation for this partnership is that it will help lead to a greater understanding of Parkinson’s disease and the development of new tools that can change its course.

“Through our collaboration with Berg, we hope to identify predictors for the disease and potential new drug targets. Armed with this information, we will be able to better diagnose and develop therapies that can treat and perhaps even halt the neurological damage caused by Parkinson’s, ” said Birgitt Schuele, MD, Director of Gene Discovery and Stem Cell Modeling at the Parkinson’s Institute. “This collaboration is very exciting. Our discoveries have the potential to change the way we think about and approach Parkinson’s disease.”

One fundamental and defining contribution of the Berg-Parkinson’s Institute collaboration will be to provide hallmark insights into disease pathophysiology.

“With diseases like cancer and diabetes, we at least have a foundational map and understanding of their pathways. Our challenge with most central nervous system (CNS) diseases is that there is a gross lack of understanding of the molecular pathways and drivers of disease pathophysiology. The anchor points are just not as clear as they are with other disease states,” said Paula P. Narain, CNS Disease Program Lead at Berg. “This collaboration will lead to insights into disease mechanisms that will provide a solid foundation for biomarker and therapeutic candidate discovery. Berg is confident that the combination of tissue samples and expertise from the Parkinson’s Institute, together with our award-winning Interrogative Biology™ platform, will usher in a paradigm shift in Parkinson’s disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!