Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovery of New Structure of Cell’s Communication Channel Could Aid Drug Development

Published: Wednesday, April 30, 2014
Last Updated: Wednesday, April 30, 2014
Bookmark and Share
Researchers hope discovery will lead to improvements in drugs that act on the sodium channel to treat a range of cardiac and pain conditions.

The structure of sodium channels – which play an essential role in the functioning of heart and nerve cells – are different than previously believed. 

Sodium channels are implicated in many serious conditions such as heart disease, epilepsy and pain, making them an important potential target for drug therapies. Unfortunately, there is still much scientists do not know about the molecules. New Cambridge research provides fresh and unexpected insight into the structure of sodium channels and, specifically, one of its components - β-subunit molecules - which are responsible for ‘fine-tuning’ the activity of the channel. The research is published in the most recent edition of the Journal of Biological Chemistry.

Nerves and other electrically-excitable cells communicate with one another by transmitting electrical signals, and sodium channels play a vital role in this process. The sodium channel lies on the surface of the nerve and muscle cells and is composed of a large molecule called the α-subunit, together with smaller β-subunit molecules. The b-subunits ‘fine-tune’ the activity of the channel, so that the initiation, frequency and duration of the action potential can be appropriately regulated. There are ten different forms of α-subunits and four different forms of b-subunits. These are expressed in different types of cells and organs within the body.

The new Cambridge research was carried out by Sivakumar Namadurai and led by Dr Tony Jackson and Dr Dima Chirgadze from the University of Cambridge’s Department of Biochemistry, and focussed on one of the b-subunits, called β3. This molecule is particularly important in regulating sodium channels located on heart cells.

For the study, the researchers used a technique called protein X-ray crystallography to determine the atomic-resolution structure of a part of the b3-subunit called the ‘immunoglobulin domain’. This region of the b3-subunit lies on the outside of the cell and binds to the heart sodium channel α-subunit.

They discovered that three b3-immunoglobulin domains come together to form a trimer (so-called because it is made up of three molecules). Using a technique called atomic force microscopy, Dilshan Balasuriya, led by Professor Mike Edwardson in Cambridge’s Department of Pharmacology, imaged individual b3 trimers and confirmed that the complete b3-subunit trimers cross-linked up to three sodium channel α-subunits.

“Our results were unexpected,” said Dr Jackson. “We have been working on the b3-subunit for about 14 years. In all that time, we have had to infer events at the molecular level indirectly. To actually see the atomic structure of the subunit and how it forms the trimer was one of those rare ‘a-ha!’ moments, like switching on a light bulb.”

Dr Chirgadze added: “Our research has important implications for our understanding of the mechanism of sodium channel behaviour. Up until now there has been an assumption that individual sodium channels function independently. But this might be too simple a view. One very exciting possibility is that the cross-linking of sodium channel α-subunits by b3 trimers could lead to several sodium channels being functionally connected together. If correct, this would allow a more efficient initiation of the action potential.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Consortium to Develop and Study Early Stage Drugs
An innovative new Consortium will act as a ‘match-making’ service between pharmaceutical companies and researchers in Cambridge with the aim of developing and studying precision medicines for some of the most globally devastating diseases.
Thursday, July 30, 2015
‘Mini-Lungs’ Grown To Aid The Study Of Cystic Fibrosis
'Mini-lungs’ have been created using stem cells derived from skin cells of patients with cystic fibrosis.
Thursday, March 19, 2015
Artificially-intelligent Robot Scientist ‘Eve’ Could Boost Search for New Drugs
Eve, an artificially-intelligent ‘robot scientist’ could make drug discovery faster and much cheaper, say researchers writing in the Royal Society journal Interface.
Wednesday, February 04, 2015
Drugging the Undruggable
Discovery opens up possibility of slowing cancer spread.
Wednesday, November 12, 2014
New System to Improve DNA Sequencing
A sensing system developed at Cambridge is being commercialised in the UK for use in rapid, low-cost DNA sequencing.
Tuesday, April 09, 2013
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Cancer Signaling Pathway Illuminating Way To Therapy
Researchers refine a pro-growth signalling pathway, common to cancers, that can kill cancer cells while leaving healthy cells unharmed.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
Biomarker Guiding Cancer Therapy
Biologists link levels of Mena protein to breast cancer cells’ sensitivity to chemotherapy.
Protein Array Can Pinpoint Cancer Biomarker
A novel detection method for the detection of glycoproteins has been developed.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!