Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Validation of Drug Toxicity Prediction using DiscoveRx Model

Published: Tuesday, May 20, 2014
Last Updated: Tuesday, May 20, 2014
Bookmark and Share
BioMAP® Systems was shown to identify important safety aspects of drugs and chemicals more efficiently and accurately than can be achieved by animal testing.

Data from BioMAP Systems analysis of 776 environmental chemicals, including reference pharmaceuticals and failed drugs, on their ability to disrupt physiologically important human biological pathways were published this week in Nature Biotechnology. The results show that this in vitro approach can reproducibly identify potential toxicities and off-target drug effects, as well as pinpoint cellular mechanisms and specifically affected biomarker endpoints underlying specific types of adverse reactions in humans. DiscoveRx Corporation’s BioSeek division conducted the analysis in collaboration with scientists from the U.S. Food and Drug Administration, National Institutes of Health and U.S. Environmental Protection Agency as part of the EPA ToxCast Program.

Assessing the safety aspects of drugs, consumer products and environmental chemicals has been historically undertaken through animal testing. However, the vast number of chemicals needing such toxicological assessment  and the fact that results in animals often do not translate well to results in humans require the development of alternative, faster, more accurate and humane testing approaches.

“This publication examines an unprecedentedly large data set in terms of number of chemicals, chemical diversity and types of assays screened phenotypically in BioMAP primary human cell models of tissue biology and disease,” said Ellen L. Berg, Ph.D., Scientific Director and General Manager of DiscoveRx’s BioSeek division and an author of the publication.  “In contrast to screening approaches aimed at understanding the actions of a single agent at the molecular and mechanistic level, this method harvests the collective knowledge embedded in reference chemicals with respect to their molecular targets, mechanisms of action, and animal and human toxicity and applies it to characterizing the biological activity of new chemicals or medicines.

“Our results show such systems to be a highly useful and reproducible tool for predictive toxicology that can identify potential chemical targets, toxicological liabilities and molecular mechanisms that elucidate specific adverse outcome pathways for drugs and other chemicals,” Dr. Berg continued. “Even using a limited set of primary human cell systems, we were able to recognize consistent patterns of activity that were closely correlated with diverse drug actions and toxicities. New chemicals falling into profile clusters with known activities suggest specific potential toxicities for more careful evaluation, greatly increasing the efficiency of toxicity testing by focusing resources for follow-up testing on the bioactivities of highest concern.”

For example, drugs and chemicals, including selective estrogen receptor modulators, tamoxifen and raloxifene, that are associated with thrombosis-related side effects, like deep vein thrombosis (DVT), were found to preferentially increase the levels of tissue factor in BioMAP models of vascular inflammation.  Thus, the use of these models for screening earlier in the drug discovery process may help identify new medicines with reduced potential for this debilitating side effect.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DiscoveRx Corporation Continues to Innovate with Solutions for Epigenetic Drug Discovery Programs
The company announced availability of platform for studying Bromodomains, an emerging class of epigenetic targets.
Monday, February 06, 2012
DiscoveRx Expands its GPCR Technology Portfolio to Include Advanced Technologies
Introduces two additional GPCR platforms to facilitate counterscreening, lead optimization and SAR evaluation of compounds.
Friday, April 09, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos