Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Potential Alzheimer’s Drug Prevents Abnormal Blood Clots in the Brain

Published: Friday, June 27, 2014
Last Updated: Wednesday, July 02, 2014
Bookmark and Share
Researchers have identified a compound that might halt the progression of Alzheimer’s by interfering with the role of plaque forming amyloid-ß.

Without a steady supply of blood, neurons can’t work. That’s why one of the culprits behind Alzheimer’s disease is believed to be the persistent blood clots that often form in the brains of Alzheimer’s patients, contributing to the condition’s hallmark memory loss, confusion and cognitive decline.

For more than a decade, potential Alzheimer’s drugs have targeted amyloid-β, but, in clinical trials, they have either failed to slow the progression of the disease or caused serious side effects. However, by targeting the protein’s ability to bind to a clotting agent in blood, the work in Sidney Strickland’s Laboratory of Neurobiology and Genetics at Rockefeller University offers a promising new strategy. This work is highlighted in the July issue of Nature Reviews Drug Discovery.

This latest study builds on previous work in Strickland’s lab showing amyloid-β can interact with fibrinogen, the clotting agent, to form difficult-to-break-down clots that alter blood flow, cause inflammation and choke neurons.

“Our experiments in test tubes and in mouse models of Alzheimer’s showed the compound, known as RU-505, helped restore normal clotting and cerebral blood flow. But the big pay-off came with behavioral tests in which the Alzheimer’s mice treated with RU-505 exhibited better memories than their untreated counterparts,” Strickland says. “These results suggest we have found a new strategy with which to treat Alzheimer’s disease.”

RU-505 emerged from a pack of 93,716 candidates selected from libraries of compounds, the researchers write in the June issue of the Journal of Experimental Medicine. Hyung Jin Ahn, a research associate in the lab, examined these candidates with a specific goal in mind: Find one that interferes with the interaction between fibrinogen and amyloid-β. In a series of tests that began with a massive, automated screening effort at Rockefeller’s High Throughput Resource Center, Ahn and colleagues winnowed the 93,000 contenders to five. Then, test tube experiments whittled the list down to one contender: RU-505, a small, synthetic compound. Because RU-505 binds to amyloid-β and only prevents abnormal blood clot formation, it does not interfere with normal clotting. It is also capable of passing through the blood-brain barrier.

“We tested RU-505 in mouse models of Alzheimer’s disease that over-express amyloid-β and have a relatively early onset of disease. Because Alzheimer’s disease is a long-term, progressive disease, these treatments lasted for three months,” Ahn says. “Afterward, we found evidence of improvement both at the cellular and the behavioral levels.”

The brains of the treated mice had less of the chronic and harmful inflammation associated with the disease, and blood flow in their brains was closer to normal than that of untreated Alzheimer’s mice. The RU-505-treated mice also did better when placed in a maze. Mice naturally want to escape the maze, and are trained to recognize visual cues to find the exit quickly. Even after training, Alzheimer’s mice have difficulty in exiting the maze. After these mice were treated with RU-505, they performed much better.

“While the behavior and the brains of the Alzheimer’s mice did not fully recover, the three-month treatment with RU-505 prevents much of the decline associated with the disease,” Strickland says.

The researchers have begun the next steps toward developing a human treatment. Refinements to the compound are being supported by the Robertson Therapeutic Development Fund and the Tri-Institutional Therapeutic Discovery Institute. As part of a goal to help bridge critical gaps in drug discovery, these initiatives support the early stages of drug development, as is being done with RU-505.

“At very high doses, RU-505 is toxic to mice and even at lower doses it caused some inflammation at the injection site, so we are hoping to find ways to reduce this toxicity, while also increasing RU-505’s efficacy so smaller doses can accomplish similar results,” Ahn says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Unique Model for Studying ALS
Unique mouse model will allow researchers to better study the genetic origins and potential treatments of ALS.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!