Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>Products>This Product
  Products


IsoCyte Laser Scanning Cytometer

Product Description

"Experience the benefit of multiplexed, cell- and bead-based assays performed during high content screening in a high throughput screening environment, ensuring heterogeneous responses can be captured earlier in the research and discovery of new therapeutics.
Now multiplexed, homogeneous, bead and cell-based assays become easy to develop and run as robust primary screens. The cytometer can scan a plate in as little as 3 minutes, regardless of cell- or well-density while resolving objects at micron resolution in four colors simultaneously. These fast scan times and whole well analysis can gather data from >150,000 wells per 8-hour day, achieving the acquisition rates expected of high-throughput screening. The cytometer's speed comes from unique design elements including a large depth of focus and large field of view which eliminates the requirements to periodically focus or acquire multiple exposures to cover an entire field of view. A light scatter (labe free) mode allows generation of data from non-fluorescent objects (e.g., stem cell colonies where addition of dyes is unacceptable).

To help simplify the workflow of moving suspension cytometry assays into the screening environment, the IsoCyte Cytometer leverages a microplate-based environment to streamline evaluation of both adherent and suspension cell types, eliminating separation steps for adherent cells or colonies while eradicating daily routine procedures to prime and clean fluid lines. This well-based environment utilizes small aliquots (384- or 1536-well plates), preserving valuable stem or primary cells.  See the poster ""High-Throughput Multiplexed Assay for Analysis of Hematopoietic Stem Cells Differentiation and Hematopoietic Toxicity"".  Additionally, a microplate based assay allows samples to be rescanned to confirm results or gather additional content at a higher magnification on other systems."

Product IsoCyte Laser Scanning Cytometer
Company Molecular Devices Product Directory
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices Product Directory
1311 Orleans Drive Sunnyvale, CA 94089-11361 United States

Tel: 1-800-635-5577
Fax: 1-408-548-6439
Email: om@moldev.com



Scientific News
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Unique Model for Studying ALS
Unique mouse model will allow researchers to better study the genetic origins and potential treatments of ALS.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."

SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!