Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>Products>This Product

MaxDiscovery™ GAPDH ELISA Kit

Product Description
The MaxDiscovery™ Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) ELISA Kit is an enzyme immunoassay that analyzes the quantity of GAPDH in cells, tissues, serum or urine. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH initiates the second stage of glycolysis, catalyzing the reaction that converts glyceraldehyde 3-phosphate (GAP) into 1,3 bisphosphoglycerate (1,3 BPG). GAPDH oxidizes and phosphorylates GAP to produce 1,3 BPG, which is then used as an intermediate in the synthesis of ATP. While the glycolytic function of GAPDH is widely known, recent evidence suggests that GAPDH is a highly versatile molecule that plays several diverse roles in living systems. Mammalian GAPDH is involved in a great number of intracellular processes such as membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. There have also been many findings that GAPDH plays a role in different pathologies including prostate cancer progression, programmed neuronal cell death and age-related neuronal diseases, i.e. Alzheimer’s and Huntington’s disease. The GAPDH gene is constitutively expressed at high levels in almost all tissues. However, the molecular mechanism that sustains high-level expression of this housekeeping enzyme is still unclear. GAPDH is almost always a tetramer and is localized to the cytoplasm in healthy cells. Translocation of GAPDH into the nucleus is seen during its role in the early stages of apoptosis and oxidative stress. Because of its high-level and constitutive expression, GAPDH is widely used as a loading control for Northern/Western blots and for protein normalization. Like most ELISA assays, the MaxDiscovery™ GAPDH ELISA Test relies on a Horseradish Perioxidase (HRP) conjugated antibody and the TMB (3,3´,5,5´-tetramethylbenzidine) substrate. TMB is a chromogen that yields a blue color when oxidized with hydrogen peroxide (catalyzed by HRP) that has major absorbances at 370 nm and 652 nm. The color then changes to yellow with the addition of acid with maximum absorbance at 450 nm. The relative amount of GAPDH protein in the cells will be directly proportional to the amount of signal that is obtained at 450 nm. Selected Citations: Jones, J. A. et al. (July, 2010) Alterations in membrane type-1 matrix metalloproteinase abundance after the induction of thoracic aortic aneurysm in a murine model. Am J Physiol Heart Circ Physiol, 299: H114 - H124. doi: 10.1152/ajpheart.00028.2010
Product MaxDiscovery™ GAPDH ELISA Kit
Company BIOO Scientific - Product Directory
Price Request a quote
More Information View company product page
Catalog Number 1 x 96 wells
Quantity 510
Company Logo

BIOO Scientific - Product Directory
3913 Todd Lane Suite 312 Austin, TX 78744, USA

Tel: +1 512-707-8993
Fax: +1 512-707-8122

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.


Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos