Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>Products>This Product

SpectraMax® i3: When is the last time you inspected your cells and ran an assay on the same instrument?

Product Image
Product Description

The SpectraMax® i3 is Molecular Devices latest multi-mode microplate reader which delivers several applications including; Ultra-Violet to visible absorbance detection, fluorescence intensity and multi-colour luminescence. There is the option to add user-installable cartridges as your research needs evolve including HTRF®, AlphaScreen® and Fluorescence Polarisation assays as well as cellular imaging, (with the SpectraMax® MiniMax™) increasing the instruments flexibility. This highly sensitive instrument accommodates the budget and throughput needs of both small and large laboratories alike.

The SpectraMax® i3 Platform's base system features an integrated optical system which enables both top and bottom reads for 6-, 384- well microplates and launches with three broad detection modes: luminescence, absorbance, and fluorescence. The patented user-exchangeable cartridge design expands the system's detection capability making it highly versatile, and able to offer application options far exceeding those of standard readers.

Using a combination of a flash lamp for spectral flexibility and light emitting diodes (LEDs) for excitation power, Molecular Devices has developed the patent-pending Spectral Fusion™ Illumination to deliver wavelength flexibility whilst maximizing signal strength, ultimately increasing overall performance.

Data from the SpectraMax® i3 System is captured and analysed using Molecular Devices' proprietary, industry-leading SoftMax® Pro Software. The newly updated interface and Spectral Optimization Wizard simplifies the workflow and provides powerful data analysis features, eliminating the need for training on additional software. The SpectraMax® i3 System is also available for use in GMP and GLP labs when used with the SoftMax® Pro 6.3 GxP Microplate Data Compliance Software. This new user interface and powerful data analysis package simplifies the set-up of the SpectraMax® i3 platform, getting you to your results much faster!

SpectraMax® MiniMax™ Imaging Cytometer

When is the last time you inspected your cells and ran an assay on the same instrument? With the user-upgradable imaging cytometer option, turn your SpectraMax® i3 microplate reader into a cellular imager and unlock a new world of applications. 

The MiniMax™ Imaging Cytometer module adds first of its kind cellular imaging to a multi-mode detection platform, enabling fluorescence and bright field cellular imaging. Combining cellular imaging with microplate-based applications offers new ways for scientists to compress their workflows and increase efficiency. 

Key benefits include:

User Upgradeability:
Expand the 3-mode base system with additional application cartridges for FP, HTRF®, AlphaScreen® assays and cellular imaging. These user-installable cartridges prevent the need for system down time or service engineers. 

SpectraMax® MiniMax™ Imaging Cytometer:
Simplifies complex imaging workflows by visualising cell morphology changes on top of well-based intensity readings

Spectral Fusion™ Illumination:
Delivers high-powered full spectrum light source for increased fluorescence performance across the entire excitation range

Expanded Dynamic Range:
Sophisticated engineering delivers optimal sensitivity and maximises signal range 

Imagine the SpectraMax® i3 in your lab today and begin to realise what this system will bring to your research!

For more information on the SpectraMax® i3 and SpectraMax® MiniMax™ and to see a video of them in action CLICK HERE

Product SpectraMax® i3: When is the last time you inspected your cells and ran an assay on the same instrument?
Company Molecular Devices
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices
660 - 665 Eskdale Road Winnersh Triangle Wokingham Berkshire RG41 5TS

Tel: +44-118-944-8000
Fax: +44-118-944-8001

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Giant Molecules Inhibit Ebola Infection
European researchers have designed a "giant" molecule formed by thirteen fullerenes covered by carbohydrates which, by blocking this receptor, are able to inhibit the cell infection by an artificial ebola virus model.


Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos