Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Onyx Pharmaceuticals Announces Cell Publication Demonstrating Selectivity of Immunoproteasome Inhibitor ONX 0914

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
Article describes the crystal structures of two forms of the proteasome found in mammalian cells.

Two forms are the constitutive proteasome, expressed by the majority of cells in the body, and the immunoproteasome, expressed in cells derived from the bone marrow, including T-cells and B-cells, two types of white blood cells.

In addition, this work includes structural analysis of the binding of ONX 0914, a selective inhibitor of the immunoproteasome being developed by Onyx, to proteasome active sites. These findings demonstrate the selectivity of ONX 0914, Onyx's proprietary compound, and support the rational design of new immunoproteasome-specific and dual-targeting inhibitors for the potential treatment of autoimmune disorders and cancer. The article is titled "Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity."

"This research demonstrates the molecular basis of the selectivity of ONX 0914 for the immunoproteasome and highlights its potential as a treatment for autoimmune disorders, such as rheumatoid arthritis and lupus. Selective inhibition of the immunoproteasome may provide anti-inflammatory activity while having a minimal effect on the proteasome in other tissues or on normal immune system function," said Christopher J. Kirk, Ph.D., Vice President of Research at Onyx Pharmaceuticals.

Authors included Drs. Eva Huber, Wolfgang Heinemeyer and Michael Groll of the Center for Integrated Protein Science at the Technical University in Munich, Germany; Drs. Michael Basler, Ricarda Schwab and Marcus Groettrup of the University of Constance in Konstanz, Germany; and Dr. Christopher Kirk of Onyx Pharmaceuticals where ONX 0914 is being developed.
About ONX 0914 ONX 0914, currently in preclinical development, is a highly selective immunoproteasome inhibitor with potential treatment applications in autoimmune disorders, such as rheumatoid arthritis, inflammatory bowel disease and lupus.

The proteasome is an intracellular complex present in most cells that mediates the degradation of intracellular proteins, including key components of pathways that contribute to cancer cell growth and immune signaling. It is a proven and validated target for therapeutic intervention in oncology, but the side effect profiles of existing inhibitors have restricted the potential of this target for therapeutic intervention in autoimmune diseases. While the majority of cell types in the body express the standard form of the proteasome called the constitutive proteasome, cells of the immune system express a unique form of the proteasome called the immunoproteasome. An immunoproteasome-specific inhibitor may have the potential to selectively target proteasome function in immune cells, with minimal effects on the proteasome in other cells.

ONX 0914 was specifically designed to be a potent inhibitor of the immunoproteasome with minimal cross-reactivity for the constitutive proteasome. Recent evidence suggests that the immunoproteasome regulates the production of several inflammatory cytokines, including Tumor Necrosis Factor-a (TNF-a), Interleukin-6 (IL-6), IL-17, and IL-23. In preclinical models of rheumatoid arthritis and lupus, ONX 0914 blocked progression of these diseases and was generally well-tolerated. Preclinical studies are underway to evaluate the potential of ONX 0914 in the treatment of a range of autoimmune disorders.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!