Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps Led Team Awarded $22.5 Million for Immune Response Project

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
The team have received a five-year project renewal from the NIH to uncover the workings of the immune system.

The grant is focused on innovative technologies that will ultimately provide data for improving a wide range of human diseases that include viral and bacterial infections and inherited immune disorders.

"I’m delighted the National Institute of Allergy and Infectious Diseases has decided to continue supporting this important research," said the grant’s principal investigator Richard Ulevitch, who is a professor and chairman emeritus at Scripps Research. “Since the initiative began 10 years ago, the consortium has made seminal contributions to the field. Now, thanks to the new funding, there are more discoveries to come.”

The project takes an unusual wide-angle “genetic and systems biology” approach to learning how we stay healthy in the face of numerous microbes in our environment. In contrast to traditional hypothesis-driven research, in which a single gene or protein is selected for study based on its proposed function, team members assemble information about multiple genes, proteins, and biochemical pathways without preconceived ideas about function. This data is then integrated and examined from multiple perspectives to understand the immune response as a whole.

In addition to Ulevitch and his group at Scripps Research, the consortium includes the laboratories of Alan Aderem of the Seattle Biomedical Research Institute, Bruce Beutler of University of Texas Southwestern Medical Center, Christopher Goodnow of the Australian National University, and Garry Nolan of Stanford University.

Ulevitch notes that the group is now especially interested in the intersection between innate and adaptive immunity. Innate immunity, our body's first line of defense, can destroy foreign invaders and trigger inflammation that contributes to their demise. If microorganisms make it past this gauntlet, the body calls on adaptive immunity. Here, T cells, B cells, antibodies, and killer cells come into play; the adaptive immune system also stores "memories" of the offending microorganisms to be on the alert for future attacks.

The team is using a genetic approach in mice, known as “forward genetics,” to develop a detailed model of innate and adaptive immune responses to infection. “It is now crystal clear that data from mouse genetics provides insights into human disease,” Ulevitch said. “When we started there were a lot more unknowns, but now there is a long list of genes identified in the mouse that cause both specific mouse phenotypes and are similarly linked to human disease.”

The group provides resources to the scientific community at large, including a Web-based data portal to access the team’s findings (see www.systemsimmunology.org).

This program has received ongoing support from NIH since 2002. The NIH project number for the grant is U19 AI100627.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
Revealing Molecular Secrets Behind the Health Benefits of Wine
Resveratrol has been much in the news as the component of grapes and red wine associated with reducing “bad cholesterol,” heart disease and some types of cancer.
Wednesday, April 30, 2014
Scripps Researchers Find New Point of Attack on HIV for Vaccine Development
The newly identified site can be attacked by human antibodies in a way that neutralizes the infectivity of a wide variety of HIV strains.
Friday, April 25, 2014
Scripps Research Appoints Cancer Biologist
Christoph Rader is appointed as associate professor in the Department of Cancer Biology and the Department of Molecular Therapeutics.
Monday, August 06, 2012
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!