Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Researchers Restore Children's Immune Systems with Refinements in Gene Therapy

Published: Thursday, September 13, 2012
Last Updated: Thursday, September 13, 2012
Bookmark and Share
A refined gene therapy approach safely was shown to restore the immune systems of some children with severe combined immunodeficiency.

The rare condition blocks the normal development of a newborn’s immune system, leaving the child susceptible to every passing microbe. Children with severe combined immunodeficiency (SCID) experience chronic infections, which usually triggers the diagnosis. Their lifespan is two years if doctors cannot restore their immunity.

The findings from facilities including the National Institutes of Health, the University of California, Los Angeles (UCLA), and the Children’s Hospital Los Angeles, are reported in the Sept. 11, 2012, advanced online issue of the journal Blood, the official journal of the American Society of Hematology.

In the 11-year study, the researchers tested a combination of techniques for gene therapy, arriving at one that produced normal levels of immune function for three patients.

"Doctors who treat patients with SCID have had limited treatment options for too long," said Dan Kastner, M.D., Ph.D., scientific director of the National Human Genome Research Institute (NHGRI), part of the NIH. "The research teams and the patients who have participated in the studies have together achieved an impressive advance toward a cure that is welcome news for both the scientific and patient communities."

Gene therapy is an experimental method for treating patients with genetic diseases. It is intended to integrate functioning genes among those naturally existing in the cells of the body to make up for faulty genes. Researchers in the current study tested a set of methods to improve outcomes for children with a particular form of SCID.

"This is a highly rewarding study for those of us in the clinic and lab," said Fabio Candotti, M.D., a senior author and a senior investigator in NHGRI’s Genetics and Molecular Biology Branch. "Not only have we realized an important advancement in gene therapy, but we have seen a renewal of health in our patients."

While rare, SCID became widely known because of the remarkable boy-in-the-bubble story of the 1970s. The story was based in part on a boy named David Vetter, who lived for 13 years in a plastic isolation unit to protect him from infections. He died following an unsuccessful bone marrow transplant that doctors had hoped would repair his immune system.

SCID has many causes. In one type, a gene that produces the adenosine deaminase (ADA) enzyme becomes mutated and fails to produce the normal enzyme. Without ADA, a chemically altered form of adenosine, one of DNA’s building blocks, accumulates in rapidly dividing bone marrow cells, killing them and destroying the immune system in the process. Normal bone marrow makes healthy white blood cells, or lymphocytes, which are the key players in the immune response that reacts against harmful bacteria and destroys cells infected by viruses. ADA deficiency accounts for some 15 percent of SCID cases.

If there is a sibling available whose blood is compatible with the patient's blood, doctors can perform a bone marrow transplant. If not, a form of the enzyme has to be administered by injection regularly to maintain the child’s immune system.

Researchers seek to cure the disease by inserting a healthy copy of the ADA gene into continuously dividing bone marrow cells called stem cells. Bone marrow stem cells give rise to all other blood cells, including oxygen-carrying red cells and the white cells of the immune system. The healthy ADA gene would then produce enough enzyme to prevent immune-destroying toxicity.

Getting a healthy, working ADA gene into bone marrow stem cells has proved difficult. Until now, the success of gene therapy for ADA-deficient SCID has been limited to about 10 children in Europe. Now, after 11 years of research, three children who received an optimized form of gene therapy in this U.S. clinical trial have experienced improved health for up to five years and have not required the enzyme-replacement injections.

Together with a research group at UCLA led by Donald B. Kohn, M.D., a senior co-author and professor at UCLA’s Department of Microbiology, Immunology and Molecular Genetics, Dr. Candotti’s team conducted a gene-therapy trial in 10 patients with ADA-deficient SCID. They used two slightly different DNA insertion vehicles, called retroviral vectors, to deliver the healthy ADA gene into the bone marrow cells of the patients. Retroviruses have the specialized ability to become a permanent part of host cells. Their genome consists of RNA that can be transcribed into DNA, delivering the corrected genetic material to the host cell. The researchers reported the favorable performance of one of the vectors, which will be used from now on.

Four of the patients remained on enzyme-replacement therapy throughout the procedure. The patients experienced no adverse effects, but did not experience a gain of ADA function. The authors suggest that enzyme replacement therapy may dilute the numbers of corrected lymphocytes in the patients' immune systems, diminishing the treatment’s effect.

For six additional patients, the doctors modified their gene therapy approach, stopping enzyme-replacement therapy beforehand and treating patients with a low dose of a chemotherapy that depletes stem cells in the bone marrow, making space for the gene-corrected stem cells that had been given the new gene in the laboratory and then returned to the patient's body.

"This step proved to be important," Dr. Candotti said. "By adjusting the chemotherapy dosage, we found its optimal level for enhancing the efficacy of the corrected stem cells."

An additional eight children, most of whom are 1 year old or younger, have been added to a second phase of the study. The younger patients are showing even more favorable response rates to the therapy. “We are encouraged by the outcome of our gene therapy trial,” said Dr. Candotti. “We will continue to follow the progress of our patients and to enroll those who can benefit from this promising gene therapy strategy.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
NIH Announces Network to Accelerate Medicines for Rheumatoid Arthritis and Lupus
Partnership includes support from industry and non-profits.
Friday, September 26, 2014
NIH-Led Scientists Discover HIV Antibody that Binds to Novel Target on Virus
The antibody, 35O22, prevents 62 percent of known HIV strains from infecting cells in the laboratory.
Friday, September 05, 2014
Scientific News
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Adaptimmune’s NY-ESO-1 TCR-engineered T-Cells Demonstrate Durable Persistence
Study has been published in Nature Medicine.
Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!