Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Rockland and LIMR Expand Licensing and Commercialization Relationship

Published: Tuesday, October 30, 2012
Last Updated: Tuesday, October 30, 2012
Bookmark and Share
Rockland will market established technologies including the CellCountEZ®, OxPhos™, RadDose™ and the Intracellular ThiolEZ™ assays.

Rockland Immunochemicals Inc., has announced the expansion of a licensing and commercialization relationship with Lankenau Institute for Medical Research (LIMR) through its business development subsidiary LIMR Development, Inc. (LDI). Instrumental in advancing this relationship was Carl Leighton of Wildwood Capital.

According to a new agreement, Rockland Immunochemicals will market established technologies including the CellCountEZ®, OxPhos™, RadDose™ and the Intracellular ThiolEZ™ assays.

Detailed product information is provided at and

George Prendergast, PhD, President and CEO of LIMR stated: “We have been very pleased with our partnership with Rockland and are looking forward to continued success within this expanded relationship.”

"LIMR's independent research encompassing cancer and inflammation elegantly enhances Rockland's antibody portfolio and technology platform. It is my belief that the new products included in our expanded licensing and commercialization agreement will enhance our ability to bring unique scientific opportunities to the global research community," commented James Fendrick, President and CEO of Rockland Immunochemicals.

Included in the additional product lines will be the CellCountEZ® assay measuring metabolically active cells while simultaneously quantifying cell death to determine cell viability, cell toxicity or cellular proliferation.

The OxPhos™ assay is capable of determining the cellular glutathione recycling capacity in tissue culture as well as that of whole blood, thus providing insight into oxidative stress during the aging process, antioxidant levels upon delivery of chemotherapy regime and toxicology.

The RadDose™ assay is used for the measurement of ionizing radiation dose rates, while the Intracellular ThiolEZ™ assay is capable of determining total intracellular thiols, including glutathione and cysteine, as a means of investigating the aging, oxidative stress, antioxidant, chemotherapy response and toxicology processes.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Rockland Awarded SBIR Funding
Company awarded grant to develop antibody-based point of care device for the diagnosis of sickle cell disease.
Tuesday, September 09, 2014
Rockland Immunochemicals Expands into 60,000 Square Foot Facility
Company expands laboratories to keep pace with growth.
Thursday, May 29, 2014
Rockland Immunochemicals Awarded Phase I SBIR Funding
SBIR grant to develop nanoprobes for in vivo imaging of cancer cells and tumors.
Tuesday, October 22, 2013
Rockland Immunochemicals Acquires Epi-Plus® Product Line
Rockland Immunochemicals, Inc. announced the acquisition of the Epi-Plus® antibody product line from 21st Century Biochemicals, Inc.
Tuesday, April 09, 2013
Rockland Immunochemicals Awarded Phase II SBIR Funding
Company receives grant for 1 million dollars to develop Akt/mTOR signaling pharmacodynamics assay.
Tuesday, October 16, 2012
Rockland Immunochemicals and LDI Form Antibody Commercialization Partnership
Rockland will market LDI’s entire portfolio of LIMR monoclonal and polyclonal antibodies.
Monday, April 23, 2012
Rockland Immunochemicals and Emory University Sign Master Reagent Agreement
Rockland and Emory collaborate to develop novel antibodies and antibody based tools for cancer, cell signaling and chromatin research.
Friday, January 28, 2011
Rockland Immunochemicals Awarded Phase I Funding to Develop Generic Antibodies for the Treatment of Cancer
Rockland Immunochemicals Inc. have received a Phase I Small Business Innovation Research (SBIR) grant from the National Institutes of Health to develop generic antibodies “biosimilars” for the treatment of cancer.
Thursday, November 04, 2010
Scientific News
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Gene-Edited Immune Cells Treat ‘Incurable’ Leukaemia
A new treatment that uses ‘molecular scissors’ to edit genes and create designer immune cells programmed to hunt out and kill drug resistant leukaemia has been used at Great Ormond Street Hospital (GOSH).

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos