Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Domainex Researchers Identify Small-Molecule Inhibitors of TBK1/IKKepsilon Affecting IL-17 Signaling

Published: Monday, November 05, 2012
Last Updated: Monday, November 05, 2012
Bookmark and Share
Inhibitors may have utility in autoimmune disease treatment.

Domainex Ltd. has developed a number of chemical series with potent and selective activity against two closely-related kinases TBK1 and IKKepsilon.

IL-17 mediated signaling is known to induce the expression of cytokines and other effectors that can cause a variety of immunological diseases such as psoriasis and Chronic Obstructive Pulmonary Disease (COPD).

Domainex researchers are now the first to report that small-molecule inhibitors of TBK1/IKKepsilon are able to affect IL-17 signaling.

These results suggest that the Domainex inhibitors may have utility in a wide range of clinically-important diseases that have great unmet medical needs.

Recent clinical studies reported in The New England Journal of Medicine by Lilly and Amgen have shown that neutralizing anti-IL-17 monoclonal antibodies can have a major impact on psoriasis (Leonardi et al. 2012 and Papp et al. 2012 respectively).

The demonstration by Domainex that small-molecule drugs targeting IKKepsilon can inhibit IL-17 signaling indicates that these compounds have great clinical potential in this disease and other important settings.

Domainex has developed three series of drug-like compounds, each series having inhibitors with high potency and selectivity against other kinases.

The lead compounds have good metabolic properties and the Company is now driving these compounds forwards towards a clinical candidate.

Domainex's Research Director, Trevor Perrior, said: "Domainex, in collaboration with The Institute of Cancer Research, has previously shown that its inhibitors of TBK1/IKKepsilon have activity against a variety of cancer cell-lines. Domainex has also demonstrated that its inhibitors are very potent blockers of interferon-beta production in immune cells, showing the compounds may have utility in diseases such as lupus. The latest finding that our TBK1/IKKepsilon inhibitors can also inhibit IL-17 signaling suggests that the compounds are also of potential use for treatment of other major diseases such as psoriasis and COPD. Domainex has recently obtained funding from the government-backed Biomedical Catalyst programme to explore the use of its inhibitors of IKKepsilon in COPD."

Eddy Littler, CEO of Domainex, said: "The latest results showing the activity of Domainex's TBK1/IKKepsilon inhibitors against IL-17 signaling reinforces the fact that this project is of very high interest to pharma. Indeed Domainex is already in discussion with a number of potential partners with a view to them helping us to progress the programme to the clinic, and fully exploit its enormous potential. We are also grateful for the Biomedical Catalyst award that will enable us to extend our work to COPD, and help us fully exploit our intellectual property on inhibitors of TBK1 and IKKepsilon".


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Domainex Researchers Identify Small-Molecule Inhibitors of TBK1/IKKepsilon Affecting IL-17 Signaling
Inhibitors may have utility in autoimmune disease treatment.
Monday, November 05, 2012
Scientific News
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!