Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Breakthrough Selectively Represses the Immune System

Published: Tuesday, November 20, 2012
Last Updated: Tuesday, November 20, 2012
Bookmark and Share
NIH-funded scientists develop new treatment to combat autoimmune disease in mouse model.

In a mouse model of multiple sclerosis (MS), researchers funded by the National Institutes of Health have developed innovative technology to selectively inhibit the part of the immune system responsible for attacking myelin-the insulating material that encases nerve fibers and facilitates electrical communication between brain cells.

Autoimmune disorders occur when T-cells-a type of white blood cell within the immune system-mistake the body’s own tissues for a foreign substance and attack them.

Current treatment for autoimmune disorders involves the use of immunosuppressant drugs which tamp down the overall activity of the immune system.

However, these medications leave patients susceptible to infections and increase their risk of cancer as the immune system’s normal ability to identify and destroy aberrant cells within the body is compromised.

Supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at NIH, Drs. Stephen Miller and Lonnie Shea at Northwestern University, Evanston, teamed up with researchers at the University of Sydney, and the Myelin Repair Foundation in Saratoga, Calif. to come up with a novel way of repressing only the part of the immune system that causes autoimmune disorders while leaving the rest of the system intact.

The new research takes advantage of a natural safeguard employed by the body to prevent autoreactive T-cells-which recognize and have the potential to attack the body’s healthy tissues-from becoming active. They report their results in the Nov. 18 online edition of Nature Biotechnology.

“We’re trying to do something that interfaces with the natural processes in the body,” said Shea. “The body has natural mechanisms for shutting down an immune response that is inappropriate, and we’re really just looking to tap into that.”

One of these natural mechanisms involves the ongoing clearance of apoptotic, or dying, cells from the body. When a cell dies, it releases chemicals that attract specific cells of the immune system called macrophages.

These macrophages gobble up the dying cell and deliver it to the spleen where it presents self-antigens-tiny portions of proteins from the dying cell-to a pool of T-cells.

In order to prevent autoreactive T-cells from being activated, macrophages initiate the repression of any T-cells capable of binding to the self-antigens.

Dr. Miller was the first to demonstrate that by coupling a specific self-antigen such as myelin to apoptotic cells, one could tap into this natural mechanism to suppress T-cells that would normally attack the myelin.

The lab spent decades demonstrating that they could generate antigen-specific immune suppression in various animal models of autoimmune diseases.

Recently, they initiated a preliminary clinical trial with collaborators in Germany to test the safety of injecting the antigen-bound apoptotic cells into patients with MS.

While the trial successfully demonstrated that the injections were safe, it also highlighted a key problem with using cells as a vehicle for antigen delivery:

"Cellular therapy is extremely expensive as it needs to be carried out in a large medical center that has the capability to isolate patient’s white blood cells under sterile conditions and to re-infuse those antigen-coupled cells back into the patients," said Miller. "It’s a costly, difficult, and time-consuming procedure."

Thus began a collaboration with Dr. Shea, a bioengineer at Northwestern University, to discuss the possibility of developing a surrogate for the apoptotic cells.

After trying out various formulations, his lab successfully linked the desired antigens to microscopic, biodegradable particles which they predicted would be taken up by circulating macrophages similar to apoptotic cells.

Much to their amazement, when tested by the Miller lab, the antigen-bound particles were just as good, if not better, at inducing T-cell tolerance in animal models of autoimmune disorders.

Using their myelin-bound particles, the researchers were able to both prevent the initiation of MS in their mouse model as well as inhibit its progression when injected immediately following the first sign of clinical symptoms.

The research team is now hoping to begin phase I clinical trials using this new technology.

The material that makes up the particles has already been approved by the U.S. Food and Drug Administration and is currently used in resorbable sutures as well as in clinical trials to deliver anti-cancer agents.

Miller believes that the proven safety record of these particles along with their ability to be easily produced using good manufacturing practices will make it easier to translate their discovery into clinical use.

"I think we’ve come up with a very potent way to induce tolerance that can be easily translated into clinical practice. We’re doing everything we can now to take this forward," said Miller.

In addition to its potential use for the treatment of MS, the researchers have shown in the lab that their therapy can induce tolerance for other autoimmune diseases such as type I diabetes and specific food allergies.

They also speculate that transplant patients could benefit from the treatment which has the potential to retract the body’s natural immune response against a transplanted organ.

Dr. Christine Kelley, NIBIB director of the Division of Science and Technology, points to the unique collaboration between scientists and engineers that made this advance a reality.

"This discovery is testimony to the importance of multidisciplinary research efforts in healthcare," said Kelley. "The combined expertise of these immunology and bioengineering researchers has resulted in a valuable new perspective on treating autoimmune disorders."

In addition to a grant from NIBIB (R01-EB013198-02), the research was also supported by NIH’s National Institute of Neurological Disorders and Stroke (NS026543), the Myelin Repair Foundation, and the Juvenile Diabetes Research Foundation (17-2011-343).

NIBIB’s mission is to support multidisciplinary research and research training at the crossroads of engineering and the biological and physical sciences.

NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Experimental Ebola Antibody Protects Monkeys
Antibody isolated from Ebola survivor can advance to clinical trials.
Friday, February 26, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Itchy Inflammation Of Mosquito Bites Helps Viruses Replicate
The itchy swelling that appears at the site of a mosquito bite isn't just an irritating nuisance - it also makes viral infections spread by the insects far worse, new research has found.
Guided Chemotherapy Missiles
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Revealing T-Cells in Action
Salk scientists show how T-cell receptors reposition during an immune response, revealing more on how the immune system is regulated.
Impact of Antibiotic Treatment on the Infant Gut Microbiome
Study shows that antibiotic treatment reduces stability and diversity of microbial population in the first three years of life.
Viruses Hack Their Host's Genome with CRISPR
A virus that infects major freshwater bacteria appears to use stolen bits of immune system DNA to highjack their hosts’ immune response.
Reclaiming The Immune System's Assault On Tumors
EPFL study shows a way to reclaim corrupted immune cells.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!