Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Breakthrough Selectively Represses the Immune System

Published: Tuesday, November 20, 2012
Last Updated: Tuesday, November 20, 2012
Bookmark and Share
NIH-funded scientists develop new treatment to combat autoimmune disease in mouse model.

In a mouse model of multiple sclerosis (MS), researchers funded by the National Institutes of Health have developed innovative technology to selectively inhibit the part of the immune system responsible for attacking myelin-the insulating material that encases nerve fibers and facilitates electrical communication between brain cells.

Autoimmune disorders occur when T-cells-a type of white blood cell within the immune system-mistake the body’s own tissues for a foreign substance and attack them.

Current treatment for autoimmune disorders involves the use of immunosuppressant drugs which tamp down the overall activity of the immune system.

However, these medications leave patients susceptible to infections and increase their risk of cancer as the immune system’s normal ability to identify and destroy aberrant cells within the body is compromised.

Supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at NIH, Drs. Stephen Miller and Lonnie Shea at Northwestern University, Evanston, teamed up with researchers at the University of Sydney, and the Myelin Repair Foundation in Saratoga, Calif. to come up with a novel way of repressing only the part of the immune system that causes autoimmune disorders while leaving the rest of the system intact.

The new research takes advantage of a natural safeguard employed by the body to prevent autoreactive T-cells-which recognize and have the potential to attack the body’s healthy tissues-from becoming active. They report their results in the Nov. 18 online edition of Nature Biotechnology.

“We’re trying to do something that interfaces with the natural processes in the body,” said Shea. “The body has natural mechanisms for shutting down an immune response that is inappropriate, and we’re really just looking to tap into that.”

One of these natural mechanisms involves the ongoing clearance of apoptotic, or dying, cells from the body. When a cell dies, it releases chemicals that attract specific cells of the immune system called macrophages.

These macrophages gobble up the dying cell and deliver it to the spleen where it presents self-antigens-tiny portions of proteins from the dying cell-to a pool of T-cells.

In order to prevent autoreactive T-cells from being activated, macrophages initiate the repression of any T-cells capable of binding to the self-antigens.

Dr. Miller was the first to demonstrate that by coupling a specific self-antigen such as myelin to apoptotic cells, one could tap into this natural mechanism to suppress T-cells that would normally attack the myelin.

The lab spent decades demonstrating that they could generate antigen-specific immune suppression in various animal models of autoimmune diseases.

Recently, they initiated a preliminary clinical trial with collaborators in Germany to test the safety of injecting the antigen-bound apoptotic cells into patients with MS.

While the trial successfully demonstrated that the injections were safe, it also highlighted a key problem with using cells as a vehicle for antigen delivery:

"Cellular therapy is extremely expensive as it needs to be carried out in a large medical center that has the capability to isolate patient’s white blood cells under sterile conditions and to re-infuse those antigen-coupled cells back into the patients," said Miller. "It’s a costly, difficult, and time-consuming procedure."

Thus began a collaboration with Dr. Shea, a bioengineer at Northwestern University, to discuss the possibility of developing a surrogate for the apoptotic cells.

After trying out various formulations, his lab successfully linked the desired antigens to microscopic, biodegradable particles which they predicted would be taken up by circulating macrophages similar to apoptotic cells.

Much to their amazement, when tested by the Miller lab, the antigen-bound particles were just as good, if not better, at inducing T-cell tolerance in animal models of autoimmune disorders.

Using their myelin-bound particles, the researchers were able to both prevent the initiation of MS in their mouse model as well as inhibit its progression when injected immediately following the first sign of clinical symptoms.

The research team is now hoping to begin phase I clinical trials using this new technology.

The material that makes up the particles has already been approved by the U.S. Food and Drug Administration and is currently used in resorbable sutures as well as in clinical trials to deliver anti-cancer agents.

Miller believes that the proven safety record of these particles along with their ability to be easily produced using good manufacturing practices will make it easier to translate their discovery into clinical use.

"I think we’ve come up with a very potent way to induce tolerance that can be easily translated into clinical practice. We’re doing everything we can now to take this forward," said Miller.

In addition to its potential use for the treatment of MS, the researchers have shown in the lab that their therapy can induce tolerance for other autoimmune diseases such as type I diabetes and specific food allergies.

They also speculate that transplant patients could benefit from the treatment which has the potential to retract the body’s natural immune response against a transplanted organ.

Dr. Christine Kelley, NIBIB director of the Division of Science and Technology, points to the unique collaboration between scientists and engineers that made this advance a reality.

"This discovery is testimony to the importance of multidisciplinary research efforts in healthcare," said Kelley. "The combined expertise of these immunology and bioengineering researchers has resulted in a valuable new perspective on treating autoimmune disorders."

In addition to a grant from NIBIB (R01-EB013198-02), the research was also supported by NIH’s National Institute of Neurological Disorders and Stroke (NS026543), the Myelin Repair Foundation, and the Juvenile Diabetes Research Foundation (17-2011-343).

NIBIB’s mission is to support multidisciplinary research and research training at the crossroads of engineering and the biological and physical sciences.

NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Sustained SIV Remission Achieved in Monkeys
Experimental treatment boosts monkey immune system to force SIV into sustained remission.
Wednesday, October 26, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Scientific News
New Regulator of Immune Reaction Discovered
Calcium signal in cell nucleus regulates not only many brain functions but also defence reactions of the immune system.
First Steps to Neutralising Zika
Researchers have discovered a highly potent antibody that neutralises Zika infection at a cellular level.
Cell’s ‘Built-In Circuit’ Help Prevent Tumour Growth
Researchers have created cells with a 'built-in genetic circuit' that inhibits tumour growth.
Factors Behind Suppression of Stem Cell Mobilization Revealed
The findings could lead to improvements in transplantation therapy.
Common Virus Helps Fight Liver Cancer
Reovirus, a cause of childhood colds, stimulates the immune system to kill cancerous cells.
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
Targeting Pancreatic Cancer
Cutting-edge technology exploits cancer cells’ vulnerabilities to develop new treatments.
A Genome-wide View of Human DNA Viruses
In this study, Duplex sequencing was used to accurately analyse the genome-wide rate of spontaneous mutation of human adenovirus C5 (HAdv5).
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!