Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UT Southwestern Researchers Identify Mechanism that Maintains Stem Cells

Published: Tuesday, November 27, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Immune-system receptor maintains stemness of normal adult stem cells and helps leukemia cells growth.

An immune-system receptor plays an unexpected but crucially important role in keeping stem cells from differentiating and in helping blood cancer cells grow, researchers at UT Southwestern Medical Center report in the journal Nature.

“Cancer cells grow rapidly in part because they fail to differentiate into mature cells. Drugs that induce differentiation can be used to treat cancers,” said Dr. Chengcheng “Alec” Zhang, assistant professor in UT Southwestern’s departments of physiology and developmental biology.

“Our research identified a protein receptor on cancer cells that induces differentiation, and knowing the identity of this protein should facilitate the development of new drugs to treat cancers.”

The family of proteins investigated in the study could help open a new field of biology integrating immunology with stem cell and cancer research, he added.

“The receptor we identified turned out to be a protein called a classical immune inhibitory receptor, which is known to maintain stemness of normal adult stem cells and to be important in the development of leukemia,” he said.

Stemness refers to the blood stem cells’ potential to develop into a range of different kinds of cells as needed, for instance to replenish red blood cells lost to bleeding or to produce more white blood cells to fight off infection.

Once stem cells differentiate into adult cells, they cannot go back to being stem cells. Current thinking is that the body has a finite number of stem cells and it is best to avoid depleting them, Dr. Zhang explained.

Prior to this study, no high-affinity receptors had been identified for the family of seven proteins called the human angiopoetic-like proteins. These seven proteins are known to be involved in inflammation, supporting the activity of stem cells, breaking down fats in the blood, and growing new blood vessels to nourish tumors.

Because the receptor to which these proteins bind had not been identified, the angiopoetic-like proteins were referred to as “orphans,” he said.

The researchers found that the human immune-inhibitory receptor LILRB2 and a corresponding receptor on the surface of mouse cells bind to several of the angiopoetic-like proteins.

Further studies, Dr. Zhang said, showed that two of the seven family members bind particularly well to the LILRB2 receptor and that binding exerts an inhibitory effect on the cell, similar to a car’s brakes.

In the case of stem cells, inhibition keeps them in their stem state. They retain their potential to mature into all kinds of blood cells as needed but they don’t use up their energy differentiating into mature cells.

That inhibition helps stem cells maintain their potential to create new stem cells because in addition to differentiation, self-renewal is the cells’ other major activity, Dr. Zhang said. He stressed that the inhibition doesn’t cause them to create new stem cells but does preserve their potential to do so.

In future research, the scientists hope to find subtle differences between stem cells and leukemia cells that will identify treatments to block the receptors’ action only in leukemia.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Innate Immunity Connection to Rare Childhood Disease
Researchers have discovered a gene that's linked to a rare, fatal syndrome in children has an important innate immunity role.
Thursday, August 04, 2016
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Thursday, January 28, 2016
Enzyme Involved in Cell Division Also Plays a Role in Inflammation
NEK7 enzyme’s switch-like activity in immunity lead to new treatments for a variety of medical conditions linked to inflammation.
Thursday, December 10, 2015
Research Finding Could Lead to Targeted Therapies for IBD
Findings published online in Cell Reports.
Tuesday, December 01, 2015
Researchers Identify an Enzyme as a Major Culprit of Autoimmune Diseases
Inhibition of cGAS may be an effective therapy for autoimmune diseases.
Wednesday, October 28, 2015
Boosting Gut Bacteria Defense System May Lead to Better Treatments
Life-threatening bloodstream infections reversed by enhancing a specific immune defense response.
Tuesday, June 09, 2015
Immunity Enzyme Defends Against Tuberculosis Infection
Study shows that cGAS enzyme is essential for defense against the tuberculosis bacteria.
Wednesday, June 03, 2015
Researchers Find New Mechanism That Controls Immune Responses
The findings appear online in the journal Science.
Friday, February 13, 2015
New And Beneficial Function Of Endogenous Retroviruses In Immune Response Identified
ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
UT Southwestern Researcher Selected for ASBMB Merck Award
Award recognizes Dr. Zhijian Chen’s outstanding contributions to research in biochemistry and molecular biology.
Friday, July 18, 2014
Cellular Force That Drives Allergy and Asthma Can be Blocked by Interferon
Type I interferons block the development of allergy- and asthma-driving Th2 cells.
Friday, June 20, 2014
Study Identifies Potential New Strategy to Improve Odds of Corneal Transplant Acceptance
Study findings were reported in the December issue of the American Journal of Transplantation.
Tuesday, December 31, 2013
Identifying How Body Clock Affects Inflammation
UT Southwestern Medical Center researchers report that disrupting the light-dark cycle of mice increased their susceptibility to inflammatory disease.
Friday, November 08, 2013
Promising New Approach to Drug-Resistant Infections
A new type of antibiotic called a PPMO, which works by blocking genes essential for bacterial reproduction, successfully killed a multidrug-resistant germ common to health care settings.
Wednesday, October 16, 2013
Scientific News
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
Progress In Vaccination Against Vespid Venom
Researchers at the Helmholtz Zentrum München and the Technical University Munich have presented a method which facilitates a personalised procedure for wasp allergy sufferers.
New Drug Target for Inflammatory Disorders
Penn study finds enigmatic molecules maintain equilibrium between fighting infection and inflammatory havoc.
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
LncRNAs Maintain Immune Health
Long non-coding RNAs are key controllers for maintaining immune health when fighting infection or preventing inflammatory disorders.
Researchers Identify Influenza Fighting Molecule
St. Jude scientists have identified the molecule that recognizes influenza virus cells and triggers their death to fight the infection.
Breast Milk Sugar May Protect Babies Against Deadly Infection
Researchers from Imperial College London find that a sugar found in some women’s breast milk may protect babies against Group B streptococcus.
New Method of Cancer Immunotherapy
Stanford chemists have dicovered a new form of cancer immunotherapy using sugar presence manipulation.
Immune Breakthrough: Unscratching Poison Ivy’s Rash
Researchers from Monash University have discovered the molecular cause of poison ivy rash.
Alien-Like Reproduction of Single-Celled Fungi
Biologists have directly observed how microspridia, a single-celled fungi, replicate and spread.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!