Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Hope for Setback-dogged Cancer Treatment

Published: Wednesday, November 28, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.

Several drugs companies have ineffectively tried to produce antibodies that bind to the IGF-1 receptor on the cell surface, which has a critical part to play in the development of cancer. Scientists at Karolinska Institutet have now ascertained how these antibodies work, and can explain why only some cancer patients are helped by IGF-1 blockers during clinical tests. The researchers also present a means by which drugs of this kind could help more cancer patients.

Every cell contains thousands of tiny receptors that help it communicate with other cells. These receptors are involved in countless physiological processes, such as taste and smell perception and heart rate. A couple of dozen of these receptors form their own family - the kinase receptors (RTKs), which are implicated in cancer. The so-called IGF-1 receptor is particularly important for cancer cell survival, and as soon as this receptor encounters the right hormone (type 1 insulin-like growth factor, or IGF-1) into the cancer cell open a number of communication channels, helping it to grow, rapidly divide and protect itself against treatment.

Blocking this receptor with an antibody that binds to it and makes it inaccessible to IGF-1 has long been regarded as the key to a potential cancer therapy, the idea being that it will eventually lead to the death of the tumour cell. Several drugs companies have therefore been developing such antibodies in order to treat the most aggressive forms of cancer, and after some promising laboratory tests, have tested a number of these preparations on patients. However, the drugs have generally given disappointing results and helped only a small minority of patients (including children with Ewing's sarcoma), leading some companies to discontinue clinical trials focusing on the IGF-1 receptor.

The Karolinska Institutet team has now systematically analysed the different IGF-1-related triggered communication channels within a cancer cell. Their results show that the original idea is correct and that such antibody treatment does actually stop the channels from opening, with one very important exception: the MEK channel was actually powerfully stimulated by the treatment - the antibodies being as effective in this as the hormone itself - and actively helped the cancer cells to survive.

"This gives us a credible explanation why the antibody trials for the IGF-1 receptor weren't as effective as had been hoped," says principal investigator Dr Leonard Girnita, docent of pathology at Karolinska Institutet s Department of Oncology-Pathology. "So it's too early to give up on the idea of treating cancer like this   it's still a very good way of attacking the cancer, provided we can close this final communication channel. If we can do this, antibodies for the IGF-1 receptor are likely to form an effective treatment not only for Ewing's sarcoma in children but many other cancers as well."

Drugs that are used to close this channel in other forms of treatments are already available. The researchers believe that a combination therapy using such MEK inhibitors with IGF-1 blockers can be the key to releasing the potential of this therapy model.

"We've seen in the laboratory that cell lines treated in this way no longer manage to divide," says Dr Girnita. "When they die of old age there is no regrowth, so we ve seen in the laboratory environment how cancer cells die out of their own accord."

The study was financed with grants from the Swedish Cancer Society, the Swedish Research Council, the Children's Cancer Foundation, the Crown Princess Margareta Fund for the Visually Impaired, the Welander/Finsen foundations, the King Gustaf V Jubilee Fund, Vinnova (The Swedish governmental agency for innovation systems), the Cancer Research Funds of Radiumhemmet, Stockholm County Council and Karolinska Institutet.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Possible Goal for New Tuberculosis-Vaccine Identified
A new study shows for the first time the essential role of the molecule SOCS3 in the control of Tuberculosis.
Monday, July 08, 2013
Scientific News
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos