Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Technique Selectively Represses Immune System

Published: Wednesday, December 05, 2012
Last Updated: Wednesday, December 05, 2012
Bookmark and Share
Technique might be used to treat multiple sclerosis and other autoimmune disorders.

Researchers devised a way to successfully treat symptoms resembling multiple sclerosis in a mouse model.

With further development, the technique might be used to treat multiple sclerosis and other autoimmune disorders.

Multiple sclerosis is an autoimmune disease-a type of disease in which the immune system mistakenly attacks the body’s own tissues.

In multiple sclerosis, immune system T cells attack myelin, the insulating material that encases nerve fibers.

Resulting nerve damage in the brain and spinal cord can cause muscle weakness, loss of vision, numbness or tingling, and difficulty with coordination and balance. It can also lead to paralysis.

Current treatments for autoimmune disorders involve the use of immunosuppressant drugs. These work by tamping down immune system activity.

However, they can also leave patients susceptible to infections and increase their risk of cancer.

Drs. Stephen Miller and Lonnie Shea at Northwestern University teamed up with researchers at the University of Sydney and the Myelin Repair Foundation in California to come up with a more targeted approach.

They aimed to repress only the part of the immune system that causes autoimmune disorders while leaving the rest of the system intact.

Their new approach takes advantage of a natural safeguard used by the body to deactivate T cells that have the potential to attack the body’s healthy tissues.

Apoptotic, or dying, cells release chemicals that attract immune system cells called macrophages.

Macrophages gobble up the dying cells and deliver them to the spleen, where they present self-antigens-tiny portions of proteins from the dying cells-to a pool of T cells.

To ensure that T cells don’t attack the body’s own tissues, the macrophages initiate the repression of any T cells that bind to the self-antigens.

In previous work, Miller’s group was able to couple specific self-antigens such as myelin to apoptotic cells to tap into this natural mechanism and suppress T cells that would normally attack the body’s own tissue. However, using apoptotic cells as a vehicle proved to be a costly, difficult and time-consuming procedure.

In the new study, the team linked myelin antigens to microscopic, biodegradable particles in the hope that these would be similarly taken up by circulating macrophages.

Their work was partly supported by NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB) and National Institute of Neurological Disorders and Stroke (NINDS). The study appeared online on November 18, 2012, in Nature Biotechnology.

The myelin-bound particles proved to be just as good as apoptotic cells, if not better, at inducing T-cell tolerance in a mouse model of multiple sclerosis. The particles both prevented symptoms and slowed their progression when injected at first detection of disease symptoms.

The team is hoping to begin phase I clinical trials in the near future. The material that makes up the particles has already been approved by the U.S. Food and Drug Administration for other uses.

The researchers are also exploring the approach to treat other autoimmune diseases such as type 1 diabetes and food allergies.

“I think we've come up with a very potent way to induce tolerance that can be easily translated into clinical practice,” Miller says. “We’re doing everything we can now to take this forward.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
Scientific News
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!