Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Technique Selectively Represses Immune System

Published: Wednesday, December 05, 2012
Last Updated: Wednesday, December 05, 2012
Bookmark and Share
Technique might be used to treat multiple sclerosis and other autoimmune disorders.

Researchers devised a way to successfully treat symptoms resembling multiple sclerosis in a mouse model.

With further development, the technique might be used to treat multiple sclerosis and other autoimmune disorders.

Multiple sclerosis is an autoimmune disease-a type of disease in which the immune system mistakenly attacks the body’s own tissues.

In multiple sclerosis, immune system T cells attack myelin, the insulating material that encases nerve fibers.

Resulting nerve damage in the brain and spinal cord can cause muscle weakness, loss of vision, numbness or tingling, and difficulty with coordination and balance. It can also lead to paralysis.

Current treatments for autoimmune disorders involve the use of immunosuppressant drugs. These work by tamping down immune system activity.

However, they can also leave patients susceptible to infections and increase their risk of cancer.

Drs. Stephen Miller and Lonnie Shea at Northwestern University teamed up with researchers at the University of Sydney and the Myelin Repair Foundation in California to come up with a more targeted approach.

They aimed to repress only the part of the immune system that causes autoimmune disorders while leaving the rest of the system intact.

Their new approach takes advantage of a natural safeguard used by the body to deactivate T cells that have the potential to attack the body’s healthy tissues.

Apoptotic, or dying, cells release chemicals that attract immune system cells called macrophages.

Macrophages gobble up the dying cells and deliver them to the spleen, where they present self-antigens-tiny portions of proteins from the dying cells-to a pool of T cells.

To ensure that T cells don’t attack the body’s own tissues, the macrophages initiate the repression of any T cells that bind to the self-antigens.

In previous work, Miller’s group was able to couple specific self-antigens such as myelin to apoptotic cells to tap into this natural mechanism and suppress T cells that would normally attack the body’s own tissue. However, using apoptotic cells as a vehicle proved to be a costly, difficult and time-consuming procedure.

In the new study, the team linked myelin antigens to microscopic, biodegradable particles in the hope that these would be similarly taken up by circulating macrophages.

Their work was partly supported by NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB) and National Institute of Neurological Disorders and Stroke (NINDS). The study appeared online on November 18, 2012, in Nature Biotechnology.

The myelin-bound particles proved to be just as good as apoptotic cells, if not better, at inducing T-cell tolerance in a mouse model of multiple sclerosis. The particles both prevented symptoms and slowed their progression when injected at first detection of disease symptoms.

The team is hoping to begin phase I clinical trials in the near future. The material that makes up the particles has already been approved by the U.S. Food and Drug Administration for other uses.

The researchers are also exploring the approach to treat other autoimmune diseases such as type 1 diabetes and food allergies.

“I think we've come up with a very potent way to induce tolerance that can be easily translated into clinical practice,” Miller says. “We’re doing everything we can now to take this forward.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Sustained SIV Remission Achieved in Monkeys
Experimental treatment boosts monkey immune system to force SIV into sustained remission.
Wednesday, October 26, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Scientific News
Immune-Cell Traps May Aid Cancer Metastasis
Study suggests cancer cells can induce neutrophils to release traps which the cells use to capture pathogens.
Boosting Effectiveness of Asthma Therapy
A team of scientists from UCSF has developed a new treatment to dampen bronchospasm.
New Regulator of Immune Reaction Discovered
Calcium signal in cell nucleus regulates not only many brain functions but also defence reactions of the immune system.
First Steps to Neutralising Zika
Researchers have discovered a highly potent antibody that neutralises Zika infection at a cellular level.
Cell’s ‘Built-In Circuit’ Help Prevent Tumour Growth
Researchers have created cells with a 'built-in genetic circuit' that inhibits tumour growth.
Factors Behind Suppression of Stem Cell Mobilization Revealed
The findings could lead to improvements in transplantation therapy.
Common Virus Helps Fight Liver Cancer
Reovirus, a cause of childhood colds, stimulates the immune system to kill cancerous cells.
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!