Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Winning the Battle against Leukaemia: Positive Early Results in Clinical Trial for DNA Vaccine

Published: Tuesday, December 11, 2012
Last Updated: Tuesday, December 11, 2012
Bookmark and Share
Early results of a trial to treat leukaemia with a WT1 DNA vaccine, has shown robust vaccine-specific antibody responses in all vaccinated patients evaluated to date.

Furthermore, T cell immune responses, including those of the “killer T cells,” were detected. Antibody and T cell responses are strong signals of the DNA vaccine’s potential to treat the disease.

Presented at the DNA Vaccines 2012 conference in California by Christian Ottensmeier, the trial’s principal investigator and Professor of Experimental Cancer Research at the University of Southampton, these interim results, from eight patients, are part of a phase II trial that will enroll 31 patients in its chronic myelogenous leukaemia (CML) arm.

To date, 14 CML patients have been enrolled while another 13 unvaccinated CML patients have been enrolled to serve as a control group. The vaccine has been shown to be safe overall and well-tolerated in the trial subjects. A detailed analysis of T cell immune responses as well as the impact of the vaccination on the molecular marker, BCR-ABL, which is a specific chromosomal abnormality that is associated with CML disease, will be performed during the trial.

As a result of the favourable safety and immunogenicity profiles observed in the CML vaccinated group, the trial is now open to enroll the acute myeloid leukaemia (AML) clinical trial arm, with a total target of 37 subjects in each of the vaccinated and control groups.

Professor Ottensmeier comments: "These preliminary data show strong vaccine-induced immune responses in vaccinated subjects in the CML arm. We are looking forward to enrolling and testing the vaccine’s impact in AML patients, who currently have limited treatment options and a low rate of progression free survival."

This open-label, multi-center phase II clinical trial is evaluating a DNA vaccine-based immune therapy to treat these two types of leukaemia. The DNA vaccine, developed by the University of Southampton, is delivered using Inovio Pharmaceuticals, Inc proprietary electroporation technology. The trial is funded by research charity Leukaemia and Lymphoma Research (LLR) and the National Institute for Health Research Efficacy and Mechanism Evaluation Programme.

Leukemia is a cancer of the bone marrow and blood that accounts for at least 300,000 new cases and 222,000 deaths worldwide each year - a very high death rate. Wilms' Tumor gene 1 (WT1) is highly associated with these types of cancer. Preclinical data from mice showed strong induction of antigen-specific CD8+ T cells and the ability to kill human tumor cells expressing WT1. This is the first study to combine DNA vaccination with electroporation delivery of WT1 antigens with the goal of stimulating high and durable levels of immune responses, in particular T cells, which are considered critical for improving clinical outcomes for this disease.

In this ongoing phase II trial, all participants initially receive six doses of two DNA vaccines (called p.DOM-WT1-37 and p.DOM-WT1-126) delivered at four week intervals. Vaccine responders may continue with booster vaccinations every three months out to 24 months. An additional 60 to 75 AML/CML patients are being enrolled across the two arms as non-vaccinated controls for comparison. The primary endpoints are molecular response to a disease marker called BCR-ABL in CML patients and time to disease progression in AML patients. The study is also monitoring WT1 transcript levels, immune responses to the WT1 antigen, time to progression and overall survival, and two-year survival in the AML group. The trial is taking place at hospitals in Southampton, London and Exeter.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Promising Developments In Tackling Resistance To Blood Cancer Drugs
A new drug with the potential to reverse resistance to immunotherapy has been developed by scientists at the University of Southampton.
Wednesday, April 15, 2015
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!