Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellmid Records Positive Data in Midkine Antibody Study in Kidney Disease

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
Anti-midkine antibodies reduced mortality rate and preserved kidney function in a mouse model of diabetic nephropathy. Kidney damage markedly reduced in treated animals.

Cellmid Limited has completed its first in-life diabetic nephropathy study with the Company’s anti-midkine antibodies (MK-Ab) in a mouse model of the disease. Two of Cellmid’s proprietary MK-Ab’s were tested. Both antibodies reduced kidney damage significantly, as assessed by functional and histological analysis, with kidney structure largely preserved in the treated animals.

This study provides important new information, as it is the first time the Company has used its own MK-Ab’s in a therapeutic setting in a kidney disease model.

Renal histological assessment showed that glomerular sclerosis was reduced from 48% in untreated animals to below 20% in both MK-Ab treated groups (p<0.01). Interstitial volume was also significantly reduced, from 35% in untreated animals to 12% in both antibody groups (p<0.01). MK-Ab treatment also maintained tubular cell height; untreated animals had mean cell heights below 2μm, compared to 4μm for treated animals (p<0.05).

Kidney function was also preserved, with MK-Ab treated animals showing reduced protein leakage into the urine compared to untreated controls. Protein casts in the kidney, indicating damage, were also significantly reduced in antibody treated animals (Figure 1). Importantly, the MK-Ab treated animals showed healthy weight gain and reduced mortality compared to untreated controls; only 6.3% of treated animals died before the end of the study, compared to 25% of the untreated animals.

Midkine’s role in kidney disease has been extensively studied in the past and is the subject of a dozen peer-reviewed publications. These studies show that MK is a key driver of inflammation and damage in a variety of kidney disease and injury settings.

The current study using Cellmid’s MK-Ab’s was conducted by scientists at the Centre for Transplantation and Renal Research (CTRR), based at the Westmead Millennium Institute and University of Sydney, Westmead Hospital, using an Adriamycin (AN)-induced mouse model of nephropathy. In this model, a single AN injection leads to kidney damage reminiscent of that seen in human diabetic nephropathy.

Diabetic nephropathy is the leading cause of chronic kidney disease globally. It is also one of the most significant long-term complications in terms of morbidity and mortality for patients with diabetes. In the USA alone, diabetes affects 26 million people, and the US Centre for Disease Control (CDC) estimates that as many as one in three adults could have diabetes by 2050 if current trends continue.

Currently, diabetic nephropathy is managed by keeping glucose levels under control, however many of the patients develop end stage renal disease (ESRD). It is estimated that 30-40% of all ESRD is caused by diabetic nephropathy.

ESRD requires the traumatic and costly interventions of kidney dialysis or transplant. A treatment that slowed or halted the progression of diabetic nephropathy into full-blown ESRD would have enormous benefits for the quality of life of diabetes sufferers in addition to reducing the massive costs associated with the treatment of ESRD.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!