Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Uncover Gene’s Role in Rheumatoid Arthritis

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Discovery may extend to other autoimmune diseases.

University of Michigan research sheds new light on why certain people are more likely to suffer from rheumatoid arthritis – paving the way to explore new treatments for both arthritis and other autoimmune diseases.

The new UMHS research in mice identifies how a specific group of genes works behind the scenes to activate the bone-destroying cells that cause severe rheumatoid arthritis, a debilitating health issue for millions of Americans.

“We believe this could be a significant breakthrough in our understanding of why certain genes are associated with higher risk of rheumatoid arthritis and other autoimmune diseases – a link that has been a mystery in the field for decades,” says lead author Joseph Holoshitz, M.D., professor of internal medicine and associate chief of research in the division of rheumatology at the U-M School of Medicine.

“We hope that this improved understanding will open the door to future design of drugs to treat this crippling disease and autoimmune disease in general.”

The research appeared in The Journal of Immunology and was highlighted by Nature Reviews Rheumatology.

Rheumatoid arthritis is a chronic inflammatory disorder that damages the lining of joints and causes bone erosion, joint deformity and disability. The disease is an autoimmune disorder, characterized by the body’s immune system mistakenly attacking the body's tissues.

Researchers have long studied the phenomenon of why certain versions of an inherited group of genes known as “human leukocyte antigen” (HLA) are associated with autoimmune disorders. One subset of these HLA genes that codes a protein sequence called “shared epitope” represents the most significant genetic risk factor for rheumatoid arthritis, affecting disease susceptibility and severity. However, until now, the reason for this strong link has been unclear.

A common theory in the field has been that the association between particular HLA genes and autoimmune diseases is a result of mistakenly identifying body tissues as foreign – making the body the target of the immune system and setting off an attack on self-tissues, which results in disease.

The UMHS research challenges this long-held theory. The study shows, for the first time, how this subset of HLA genes causes arthritis – by activating inflammation-causing cells, as well as bone-destroying cells (known as osteoclasts). This leads to severe arthritis and bone erosion.
 
“We showed how the shared epitope is directly triggering osteoclasts, the very cells that are responsible for joint destruction in people with the disease,” says Holoshitz.

“Understanding these mechanisms at play could be a significant piece of future drug development. Because we now know the molecular mechanism that activates arthritis-causing cells, we have the potential to block that pathway with simple chemical compounds that could be used to treat rheumatoid arthritis and other diseases.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Wednesday, January 27, 2016
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!