Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researcher Taking Shot at Flu Vaccine That's More Effective, Easier to Make

Published: Monday, February 11, 2013
Last Updated: Monday, February 11, 2013
Bookmark and Share
In the midst of an unusually deadly flu season and armed with a vaccine that only offers partial protection, researcher is working on a flu vaccine that overcomes the need to predict which strains will hit each year.

This year's vaccine is 62 percent effective or "moderately" effective against the current flu strains, according to early estimates from the Centers for Disease Control and Prevention. Flu-related deaths this season have reached an epidemic level and include 45 children, according to the most recent report.

Suresh Mittal, a professor of comparative pathobiology in Purdue's College of Veterinary Medicine, is applying a method he developed for an avian flu vaccine to create a more universal seasonal flu vaccine. The vaccine's protection could persist through different strains and mutations of the influenza virus and would not be dependent on accurate predictions of the strains expected each season, he said.

"This method allows us to create a vaccine that targets core parts of the influenza virus that are found across all strains and don't mutate or change quickly," Mittal said. "It also allows us to target multiple parts of the virus, so that even if the virus adapts to one line of attack, there are others that will still work to prevent the illness."

The method uses a harmless adenovirus as a vector to deliver influenza virus genes into the body where they create a two-fold immune response of antibody and cell-based protection. The adenovirus releases the genes inside the host cells, which then create proteins that lead to the creation of antibodies and special T-cells primed to kill influenza virus and any cells infected by it.

"This method works beyond that of the current vaccine, in which the body responds to inactivated virus proteins injected into a muscle," Mittal said. "Getting the influenza virus genes inside the cells better mimics an infection and leads to a more powerful and multifaceted immune response, so we are better prepared to fend off a true infection."

Any genes important to influenza virus protection can be incorporated into the adenovirus vector, and it can be designed to expose the immune system to components from both the surface and deep within the virus. In this way the immune system can be primed to recognize portions of the virus that are the same across all strains and those that are more difficult for the virus to change as it adapts to the immune system attack, he said.

The new vaccine also has manufacturing advantages over current methods because the vector is easily grown in cell culture. The current flu vaccine depends on the growth of influenza viruses in chicken eggs.

"Sometimes the virus strains selected for the year's vaccine do not grow well in an egg and that can lead to delays or shortages of the vaccine," Mittal said. "The new method depends only on the growth of the virus vector, which we know how to grow quite well. The influenza strains we select to include have no effect on the growth or the amount of vaccine that can be made."

Mittal said vaccination is critical to save lives.

"We don't think of the flu as a killer, but it kills around 35,000 people each year," he said. "Even when the flu vaccine isn't a perfect match, it still offers the best protection. It also is important to get vaccinated to help prevent the spread of the virus to those who are too young or too sick to be vaccinated themselves."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Bird Flu Expert Working on Vaccine that Protects Against Multiple Strains
As the bird flu outbreak in China worsens, a Purdue University expert is working on vaccines that offer broader protection against multiple strains of the virus.
Friday, May 10, 2013
Discovery Points to New Approach to Fight Dengue Virus
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, suggests new approach for designing vaccines against the aggressive mosquito-borne pathogen.
Monday, April 15, 2013
Research Reveals how Antibodies Neutralize Mosquito-Borne Virus
Researchers have learned the precise structure of the mosquito-transmitted chikungunya virus pathogen while it is bound to antibodies, showing how the infection is likely neutralized.
Wednesday, April 03, 2013
Purdue Research Park-based Life Sciences Firm Receives $300,000 NIH Grant
A life sciences company whose technology could help researchers develop drug candidates to battle cancer, diabetes, and immune system and neurological disorders has received a $300,000 grant.
Friday, November 16, 2012
Scientific News
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos