Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sigma Life Science to Distribute Olink Bioscience's Protein-Protein Interaction Assay

Published: Tuesday, February 12, 2013
Last Updated: Tuesday, February 12, 2013
Bookmark and Share
The products complement Sigma's antibody, RNAi and gene editing technologies.

Sigma-Aldrich® Corporation announced that Sigma® Life Science have signed an agreement to distribute worldwide Olink Bioscience's Duolink® In Situ products, which present a new disruptive method for imaging and measuring protein-protein interactions in unmodified cells. The Duolink In Situ products work in tandem with Sigma Life Science's broad antibody portfolio and will allow researchers to target the precise protein of interest and enable robust analyses and imaging. 

The versatile technology, among other applications, can be used in combination with CompoZr® Zinc Finger Nuclease-mediated gene editing to track knocked-out or knocked-in genes and with MISSION® RNA interference technologies to track protein expression following gene knockdown. "The synergy between Olink and Sigma Life Science's global support network will help the scientific community to access and to accelerate the adoption of the powerful Duolink technology," said Josef Zihlmann, Vice President at Sigma Life Science.

The proprietary PLA® technology allows Olink's Duolink In Situ products to quickly image the locations of single protein-protein interactions regardless of strength, measure protein expression levels, and identify relative changes in post-translational modification events. The technique relies upon two target-specific primary antibodies, a "plus" and "minus" pair of species-specific PLA probes conjugated to DNA oligos that—when a target pair of proteins are in close proximity—can hybridize to trigger a rolling circle amplification reaction. Fluorescent detection probes bind the several hundred-fold amplified DNA at high density, allowing visualization of single protein—protein interactions inside an intact cell using a standard fluorescence microscope.

"The ability to visualize these protein-protein interactions in unmodified cells under endogenous expression and at very low levels is a fundamental advance that allows greater insight into basic biology, pathways, spatial phenomena and potential therapeutic targets in those pathways," said Zihlmann.

More than 350 publications in the past six years have relied upon the Duolink method, which is featured in an average of five publications per week by academic and pharmaceutical researchers. The Sigma Life Science Prestige® antibody collection complements the technology with its portfolio of more than 14,000 antibodies that have been validated by immunohistochemistry, a key requirement for Duolink In Situ products to target specific proteins of interest.

"We believe the agreement with Sigma Life Science will build awareness and develop the market for Duolink In Situ through their global sales and support organization serving our growing customer base locally," said Simon Fredriksson, CEO and President of Olink Bioscience. "Sigma Life Science's extensive product range for cell biology is a perfect context for customers interested in Duolink In Situ."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sigma-Aldrich Stockholders Approve Merck Acquisition
The transaction, expected to close mid-2015, remains subject to the satisfaction of the closing conditions set forth in the merger agreement, including regulatory approvals.
Monday, December 08, 2014
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!