Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Research Breakthrough Selectively Represses the Immune System

Published: Thursday, March 21, 2013
Last Updated: Thursday, March 21, 2013
Bookmark and Share
NIH-funded scientists develop new treatment to combat autoimmune disease in mouse model.

In a mouse model of multiple sclerosis (MS), researchers funded by the National Institutes of Health have developed innovative technology to selectively inhibit the part of the immune system responsible for attacking myelin - the insulating material that encases nerve fibers and facilitates electrical communication between brain cells.

Autoimmune disorders occur when T-cells - a type of white blood cell within the immune system - mistake the body's own tissues for a foreign substance and attack them.

Current treatment for autoimmune disorders involves the use of immunosuppressant drugs which tamp down the overall activity of the immune system.

However, these medications leave patients susceptible to infections and increase their risk of cancer as the immune system's normal ability to identify and destroy aberrant cells within the body is compromised.

Supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at NIH, Drs. Stephen Miller and Lonnie Shea at Northwestern University, Evanston, teamed up with researchers at the University of Sydney, and the Myelin Repair Foundation in Saratoga, Calif. to come up with a novel way of repressing only the part of the immune system that causes autoimmune disorders while leaving the rest of the system intact.

The new research takes advantage of a natural safeguard employed by the body to prevent autoreactive T-cells - which recognize and have the potential to attack the body's healthy tissues - from becoming active. They report their results in the Nov. 18 online edition of Nature Biotechnology.

"We're trying to do something that interfaces with the natural processes in the body," said Shea. "The body has natural mechanisms for shutting down an immune response that is inappropriate, and we're really just looking to tap into that."

One of these natural mechanisms involves the ongoing clearance of apoptotic, or dying, cells from the body. When a cell dies, it releases chemicals that attract specific cells of the immune system called macrophages.

These macrophages gobble up the dying cell and deliver it to the spleen where it presents self-antigens - tiny portions of proteins from the dying cell - to a pool of T-cells.

In order to prevent autoreactive T-cells from being activated, macrophages initiate the repression of any T-cells capable of binding to the self-antigens.

Dr. Miller was the first to demonstrate that by coupling a specific self-antigen such as myelin to apoptotic cells, one could tap into this natural mechanism to suppress T-cells that would normally attack the myelin.

The lab spent decades demonstrating that they could generate antigen-specific immune suppression in various animal models of autoimmune diseases.

Recently, they initiated a preliminary clinical trial with collaborators in Germany to test the safety of injecting the antigen-bound apoptotic cells into patients with MS.

While the trial successfully demonstrated that the injections were safe, it also highlighted a key problem with using cells as a vehicle for antigen delivery:

"Cellular therapy is extremely expensive as it needs to be carried out in a large medical center that has the capability to isolate patient's white blood cells under sterile conditions and to re-infuse those antigen-coupled cells back into the patients," said Miller. "It's a costly, difficult, and time-consuming procedure."

Thus began a collaboration with Dr. Shea, a bioengineer at Northwestern University, to discuss the possibility of developing a surrogate for the apoptotic cells.

After trying out various formulations, his lab successfully linked the desired antigens to microscopic, biodegradable particles which they predicted would be taken up by circulating macrophages similar to apoptotic cells.

Much to their amazement, when tested by the Miller lab, the antigen-bound particles were just as good, if not better, at inducing T-cell tolerance in animal models of autoimmune disorders.

Using their myelin-bound particles, the researchers were able to both prevent the initiation of MS in their mouse model as well as inhibit its progression when injected immediately following the first sign of clinical symptoms.

The research team is now hoping to begin phase I clinical trials using this new technology. The material that makes up the particles has already been approved by the U.S. Food and Drug Administration and is currently used in resorbable sutures as well as in clinical trials to deliver anti-cancer agents.

Miller believes that the proven safety record of these particles along with their ability to be easily produced using good manufacturing practices will make it easier to translate their discovery into clinical use.

"I think we've come up with a very potent way to induce tolerance that can be easily translated into clinical practice. We're doing everything we can now to take this forward," said Miller.

In addition to its potential use for the treatment of MS, the researchers have shown in the lab that their therapy can induce tolerance for other autoimmune diseases such as type I diabetes and specific food allergies.

They also speculate that transplant patients could benefit from the treatment which has the potential to retract the body's natural immune response against a transplanted organ.

Dr. Christine Kelley, NIBIB director of the Division of Science and Technology, points to the unique collaboration between scientists and engineers that made this advance a reality.

"This discovery is testimony to the importance of multidisciplinary research efforts in healthcare," said Kelley. "The combined expertise of these immunology and bioengineering researchers has resulted in a valuable new perspective on treating autoimmune disorders."

In addition to a grant from NIBIB (R01-EB013198-02), the research was also supported by NIH's National Institute of Neurological Disorders and Stroke (NS026543), the Myelin Repair Foundation, and the Juvenile Diabetes Research Foundation (17-2011-343).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
Scientific News
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Four Gut Bacteria Decrease Asthma Risk in Infants
New research by scientists at UBC and BC Children’s Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Antibiotic Overuse Might be Why so Many People Have Allergies
The Centers for Disease Control and Prevention estimates that drug resistant bacteria cause 23,000 deaths and two million illnesses each year.
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Vaccination On The Horizon For Severe Viral Infection Of The Brain
Researchers from the University of Zurich and the University Hospital Zurich reveal possible new treatment methods for a rare, usually fatal brain disease.
What Do Animal Viruses Have to Do with Human Health?
Simon Anthony studies animal infections to prevent outbreaks in people.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos