Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Monoclonal Antibody Targets, Kills Leukemia Cells

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
Researchers have identified a humanized monoclonal antibody that targets and directly kills chronic lymphocytic leukemia (CLL) cells.

The findings, published in the online Early Edition of the Proceedings of the National Academy of Sciences on March 25, represent a potential new therapy for treating at least some patients with CLL, the most common type of blood cancer in the United States.

CLL cells express high levels of a cell-surface glycoprotein receptor called CD44. Principal investigator Thomas Kipps, MD, PhD, Evelyn and Edwin Tasch Chair in Cancer Research, and colleagues identified a monoclonal antibody called RG7356 that specifically targeted CD44 and was directly toxic to cancer cells, but had little effect on normal B cells.

Moreover, they found RG7356 induced CLL cells that expressed the protein ZAP-70 to undergo apoptosis or programmed cell death. Roughly half of CLL patients have leukemia cells that express ZAP-70. Such patients typically have a more aggressive form of the disease than patients with CLL cells that do not express that specific protein.

Previous research by Kipps and others has shown that CLL cells routinely undergo spontaneous or drug-induced cell death when removed from the body and cultured in the laboratory. They found that CLL cells receive survival signals from surrounding non-tumor cells that are present in the lymph nodes and bone marrow of patients with CLL. One of these survival signals appears to be transmitted through CD44. However, when CD44 is bound by the RG7356 monoclonal antibody, it seems to instead convey a death signal to the leukemia cell.

"By targeting CD44, it may be possible to kill CLL cells regardless of whether there are sufficient numbers of so-called ‘effector cells,' which ordinarily are required by other monoclonal antibodies to kill tumor cells," said Kipps. "We plan to initiate clinical trials using this humanized anti-CD44 monoclonal antibody in the not-too-distant future."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Autoimmune Disease Strategy Emerges from Immune Cell Discovery
UCSF experiments halt pancreas destruction in mouse model of diabetes.
Wednesday, September 11, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Intestinal Bacteria May Fuel Inflammation and Worsen HIV Disease
Changes in intestinal bacteria may help explain why successfully treated HIV patients still experience life-shortening chronic diseases.
Friday, July 12, 2013
Prenatal Maternal Antibodies Affect Child Development
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.
Wednesday, July 10, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Depression Linked to Telomere Enzyme, Aging, Chronic Disease
The first symptoms of major depression may be behavioral, but the common mental illness is based in biology — and not limited to the brain.
Thursday, May 23, 2013
Program for Breakthrough Biomedical Research to Celebrate 15 Years
A program that fosters basic science projects of potentially high impact is celebrating 15 years of discovery at UC San Francisco.
Tuesday, May 21, 2013
UCSF Scientists Use Human Stem Cells to Generate Immune System in Mice
Raising hopes for cell-based therapies, UC San Francisco researchers have created the first functioning human thymus tissue from embryonic stem cells in the laboratory.
Friday, May 17, 2013
Tumor-Activated Protein Promotes Cancer Spread
Researchers report that cancers physically alter cells in the lymphatic system to promote the spread of disease.
Tuesday, May 14, 2013
Scientific News
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!