Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Declaring a Truce with Our Microbiological Frienemies

Published: Wednesday, March 27, 2013
Last Updated: Wednesday, March 27, 2013
Bookmark and Share
Managing bacteria and other microorganisms in the body, rather than just fighting them, may be lead to better health and a stronger immune system, according to a Penn State biologist.

Researchers have historically focused on microbes in the body as primarily pathogens that must be fought, said Eric Harvill, professor of microbiology and infectious disease. However, he said that recent evidence of the complex interaction of the body with microbes suggests a new interpretation of the relationship.

"Now we are beginning to understand that the immune system interacts with far more beneficial bacteria than pathogens," said Harvill. "We need to re-envision what the true immune system really is."

Harvill said that this reinterpretation leads to a more flexible approach to understanding how the immune system interacts with microbes. This approach should balance between defending against pathogens and enlisting the help of beneficial microbes.

While the role that some bacteria play in aiding digestion is better known, microbes assist in improving body functions, including strengthening the immune system and responding to injuries.

In some cases, attacking pathogens can harm the beneficial effects microbes have on immune system, according to Harvill. For example, patients on antibiotics have an increased risk of contracting yeast infections and MRSA.

"Viewing everything currently considered immunity, including both resistance and tolerance, as aspects of a complex microbiome management system that mediates interactions with the sea of microbes that surround us, many of which are beneficial, can provide a much more positive outlook and different valuable perspectives," Harvill said.

The system that includes bacteria and other microbes in the human body, or the microbiome, is much larger and more integrated into human health than most people suspect, according to Harvill.

"The human body has ten times more bacterial cells than human cells," said Harvill.

Adding to the complexity is the adaptive capacity of the human immune system. The immune system can develop antibodies against certain pathogens, which it can reuse when threatened by future attacks from the same pathogen.

Harvill, who described his alternative viewpoint in the latest issue of mBio, said that some researchers have not yet accepted this broader approach to the immune system.

"Among immunologists or microbiologists this is an alien concept," said Harvill. "It's not part of how we have historically looked at the immune system, but it's a useful viewpoint."

Other researchers who study plant and nonhuman biology are already starting to embrace the concept. For example, plant biologists are beginning to recognize that viruses can help plants resist drought and heat.

"Within nonhuman immunology, this is not an alien concept because they have seen many examples of beneficial relationships between the host and its microbial commensals," Harvill said.

Harvill said adopting this new perspective could be the first step toward new medical treatments.

"This new viewpoint suggests new experiments and results will published," said Harvill. "And, hopefully, the concept becomes more and more mainstream as supporting evidence accumulates."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein ‘Passport’ Helps Nanoparticles Get Past Immune System
The body’s immune system exists to identify and destroy foreign objects, whether they are bacteria, viruses, flecks of dirt or splinters.
Monday, February 25, 2013
Scientific News
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!