Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Managing Inflammation, Controlling White Blood Cell Flow may be Key

Published: Wednesday, March 27, 2013
Last Updated: Wednesday, March 27, 2013
Bookmark and Share
New research by sets the stage for improved management of acute tissue inflammation by advancing current understanding of inflammatory processes.

To exit blood vessels and reach injured tissue, white blood cells must pass through a series of natural barriers. Some aspects of blood vessel architecture facilitate white cell migration to a greater degree than others, a means of self-regulation: Excessive migration can result in extreme inflammation, turning otherwise helpful white cells into agents of disease.

Research by Yale bioengineers reported March 26 in the journal PLOS ONE sheds new light on the roles of specific layers of vasculature, suggesting ways of controlling inflammation.

“By understanding the regulatory mechanisms within the vascular wall, we hope we can identify potential treatments to ensure or restore the balance between protection and destruction of tissues,” said Anjelica L. Gonzalez, assistant professor of biomedical engineering at Yale and principal investigator of the research.

The work focuses in particular on the function of a less permeable (and little studied, researchers said) layer of cells within the blood vessel wall known as the pericyte layer.

Using a composite microvascular model that incorporates both the inner and outer layers of blood vessels, Gonzalez and colleagues showed that the outer pericyte layer helps restrict the number of exiting white blood cells. This helps prevent excessive inflammation, they said. In contrast, the inner (endothelial) layer primes white blood cells for passage through the pericyte layer by transforming them into a more versatile cell subpopulation. A malfunctioning pericyte layer could be responsible for excessive inflammation, they said.

“The results suggest that any disease or disorder that can be termed inflammatory — including wound healing, tissue fibrosis and cancer metastasis — may be exacerbated because of a poor pericyte barrier,” said Gonzalez. “White blood cell-mediated inflammation, in particular, is related to the progression of many inflammatory disorders. These findings give us targets on the white blood cell that will allow us to develop therapeutics aimed at inhibiting their contribution to disease progression.”

The paper’s lead author is Chantal E. Ayres-Sander. Co-authors are Holly Lauridsen, Cheryl L. Maier, Parid Sava, and Jordan S. Pober.

The Hartwell Foundation, a Dubinsky New Initiatives Award, and the National Institutes of Health provided support for the research.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reduced Immune Response Causes Flu Deaths in Older Adults
Yale study suggests that immune response to flu causes death in older people, not the virus.
Friday, April 22, 2016
CNS Inflammation: A Pathway and Possible Drug Target
Scientists have long known that the central nervous system (CNS) has a remarkable ability to limit excessive inflammation in the presence of antigens or injury, but how it works has been unclear.
Tuesday, April 12, 2016
Chaos, Hope, And The Lupus Butterfly Theory
The lupus butterfly theory suggests that antibodies that attack DNA in lupus may be sources of both chaos and hope.
Wednesday, April 06, 2016
Life-Extending Hormone Bolsters Immunity
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers.
Wednesday, January 13, 2016
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
Cold Virus Replicates Better At Cooler Temperatures
Study shows that the immune response to rhinovirus is influenced by temperature.
Tuesday, January 06, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Protein Predicts Response To New Immunotherapy Drug
Trial shows that response to treatment may be predicted by the presence of an immune-suppressing protein in non-cancerous immune cells.
Friday, November 28, 2014
Immune System Surprise Hints at New Strategy for Fighting HIV
Surprising twist may open a new avenue in the fight.
Tuesday, November 18, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Commonly Used Drugs May Not Be Effective Against Autoimmune Illness
The study appears in the Cell Press journal Immunity.
Tuesday, March 18, 2014
Yale Team Implants Human Innate Immune Cells in Mice
Groundbreaking study has reproduced human immune function at a level not seen previously.
Tuesday, March 18, 2014
Lung Disease and Melanoma: a Common Molecular Mechanism?
Researchers have solved a biological mystery about the common genesis of many serious diseases such as asthma and metastatic melanoma.
Monday, September 02, 2013
Scientific News
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
New Therapy Treats Autoimmune Disease Without Harming Normal Immunity
Preclinical study from Penn shows that engineered T cells can selectively target the antibody-producing cells that cause autoimmune disease.
Harnessing An Innate Repair Mechanism Enhances The Success Of Retinal Transplantation
Cross-species research in flies and mice could help solve a major roadblock to successful stem cell replacement therapies in degenerative diseases of the retina, including age-related macular degeneration.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Itchy Inflammation Of Mosquito Bites Helps Viruses Replicate
The itchy swelling that appears at the site of a mosquito bite isn't just an irritating nuisance - it also makes viral infections spread by the insects far worse, new research has found.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!