Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Foot-and-Mouth Vaccine Signals Huge Advance in Global Disease Control

Published: Friday, March 29, 2013
Last Updated: Friday, March 29, 2013
Bookmark and Share
New FMDV vaccine designed to trigger optimum immune response.

Scientists have developed a new methodology to produce a vaccine for foot-and-mouth disease virus (FMDV). Because the vaccine is all synthetic, made up of tiny protein shells designed to trigger optimum immune response, it doesn’t rely on growing live infectious virus and is therefore much safer to produce.

Furthermore, these empty shells have been engineered to be more stable; making the vaccine much easier to store and reducing the need for a cold chain.

This is important research because it represents a big step forward in the global campaign to control FMDV in countries where the disease is endemic, and could significantly reduce the threat to countries currently free of the disease.

Crucially, this new approach to making and stabilizing vaccine could also impact on how viruses from the same family are fought, including polio.

This collaborative research was led by Professor David Stuart, Life Science Director at Diamond Light Source and MRC Professor of Structural Biology at the Department of Medicine University of Oxford and Dr Bryan Charleston, Head of Livestock Viral Diseases Programme at The Pirbright Institute.

Dr Bryan Charleston, whose team at The Pirbright Institute has developed a detailed understanding of the immune response to FMDV in cattle and is leading the vaccination trials work, says, “The FMDV epidemic in the UK in 2001 was disastrous and cost the economy billions of pounds in control measures and compensation. As a result of the outbreak the Royal Society recommended new approaches should be developed to control the virus should it happen again.

“This important work has been a direct result of the additional funding that was provided as a result of the 2001 outbreak to research this highly contagious disease. Using our detailed knowledge of the immune responses to FMDV in cattle we were able to define the characteristics that needed to be incorporated into the new vaccine platform to induce protection.”

Professor David Stuart, explains, “What we have achieved here is close to the holy grail of foot-and-mouth vaccines. Unlike the traditional vaccines, there is no chance that the empty shell vaccine could revert to an infectious form. This work will have a broad and enduring impact on vaccine development, and the technology should be transferable to other viruses from the same family, such as poliovirus and hand foot and mouth disease, a human virus which is currently endemic in South-East Asia,”.

Key results were published in the journal PLOS Pathogens on Wednesday 27th March 2013. The work is principally funded by the Department for Environment, Food and Rural Affairs, UK (Defra) and the Wellcome Trust.

Clinical trials of the synthetic shell based vaccine on cattle carried out by Dr Charleston and his team have shown it is as effective as current vaccines. Whilst a commercial product is still several years away the team hopes that the technology can be transferred as quickly as possible to make it available to a global market.

Professor Stuart says; “Instead of using infectious virus as the basis for the vaccine, which is the main traditional method of vaccine development, the team using a methodology developed by Professor Ian Jones from the University of Reading synthetically created empty protein shells to imitate the protein coat that forms the strong outer layer of the virus. By using Diamond’s visualization capabilities and the expertise of Oxford University in structural analysis and computer simulation, we were able to visualize something a billion times smaller than a pinhead and further enhance the design atom by atom of the empty shells. Through information gained at Diamond, we also verified that these have essentially the same structure as the native virus to ensure an appropriate immune response.”

Fine adjustments have been made to the empty shell to improve stability to produce a vaccine that is inherently more stable than live virus based products. This makes transporting and storing the vaccine much easier, as the pre-clinical trials have shown it to be stable at temperatures up to 56°C for at least two hours.

The disease is endemic in central Africa and some parts of the Middle East and Asia (ref. World map), so this is a major advantage over the traditional vaccine, which has to be produced and stored in a chilled and stable environment.

Dr Charleston adds, “The ability to produce a vaccine outside of high containment and that does not require a cold storage chain should greatly increase production capacity and reduce costs. Globally there is an undersupply of the vaccine due to the high cost of production and this new development could solve this problem and significantly control foot-and-mouth disease worldwide.

“Furthermore, the complete absence of some viral proteins from this new vaccine will also allow companion diagnostic tests to be further refined to demonstrate the absence of infection in vaccinated animals with greater confidence.”

Professor Stuart, concludes, “Foot-and-mouth disease is one of the most economically important diseases in livestock worldwide. With approximately 3 to 4 billion doses of vaccine administered every year, you can start appreciating the pertinence of our work. What we achieved is down to the continued support of our many funding agencies, the individual and collective perseverance of the entire collaboration and access to 21st century scientific tools to push the boundaries of scientific research.”

Nigel Gibbens, the UK’s Chief Veterinary Officer comments on the work, “This vaccine is a major breakthrough that has the potential to be an invaluable new weapon in the fight to eradicate foot-and-mouth disease. There are many more years of work and research to be done to get this vaccine ready for use, but this is undoubtedly an exciting leap forward. Once available, vaccines of this type would have clear advantages over current technology as a possible option to help control the disease should we ever have another FMD outbreak.

“This vaccine has been developed using some truly groundbreaking techniques which are a credit to the quality of British scientists working in the field of animal health.”

Development of the vaccine was supported by a Translation Award from the Wellcome Trust. Richard Seabrook, Head of Business Development at the Wellcome Trust, said: “Most people in the UK will remember the foot-and-mouth outbreaks of the 1960s and early 2000s, but FMD is a daily scourge for millions living in countries where the disease is endemic. An affordable vaccine is urgently needed to alleviate the huge economic burden that the disease places on the farming industry, particularly in the developing world. This vaccine still has some way to go before it will be available to farmers but these early results are very encouraging.”

Dr Charleston concludes, “We hope that a broad range of research groups working on vaccine development for viruses related to foot-and-mouth disease will be interested in taking our discovery forward to help tackle other major global disease challenges.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Project to Focus on Link Between Immune System and Brain Disorders
Researchers to investigate whether mood disorders, such as depression, and neurodegenerative diseases, such as Alzheimer’s, could be treated by targeting the immune system.
Monday, December 22, 2014
Ability Of HIV To Cause AIDS Could Be Slowing
Research indicates that HIV is becoming less virulent.
Tuesday, December 02, 2014
Lonely Bacteria are More Likely to Become Antibiotic-resistant
Scientists from the University of Manchester have discovered that microbes in smaller groups are more likely to mutate, resulting in higher rates of antibiotic resistance.
Wednesday, April 30, 2014
Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos