Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Will Cell Therapy Become a 'Third Pillar' of Medicine?

Published: Thursday, April 04, 2013
Last Updated: Thursday, April 04, 2013
Bookmark and Share
Treating patients with cells may one day become as common as it is now to treat the sick with drugs made from engineered proteins, antibodies or smaller chemicals.

“Today, biomedical science sits on the cusp of a revolution: the use of human and microbial cells as therapeutic entities,” said Wendell Lim, PhD, a UCSF professor and director of the UCSF Center for Systems and Synthetic Biology, and one of the co-authors of an article published online April 3 in Science Translational Medicine.

Cell therapies have the potential to address critical, unmet needs in the treatment of some of the deadliest diseases, including diabetes, cancer and inflammatory bowel diseases, the scientists said.

The reason, they said, is that cells can carry out functions that can’t be performed by small-molecule drugs produced by Big Pharma, or by targeted drugs developed by biotech firms in the wake of the genetic engineering revolution. For one, cells are adaptable. They can sense their surroundings better than today’s drugs and can vary their responses to better suit physiologic conditions.

Continued advances in cellular engineering could provide a framework, according to the co-authors, for the development of cellular therapies that are safe and that act predictably.

Joining Lim as co-authors of the Science Translational Medicine article are Michael Fischbach, PhD, assistant professor in the UCSF School of Pharmacy and an expert on the human microbiome, and Jeffrey Bluestone, PhD, executive vice chancellor and provost at UCSF and a leading diabetes and transplant rejection researcher.

The three also have organized a daylong symposium on the potential of cell therapy on April 12 supported by UCSF and the journal Science Translational Medicine, featuring talks and discussion by some of the nation’s leading scientists in stem cell therapy, immunotherapy and the human microbiome – the latter consisting primarily of the many hundreds of interacting species of bacteria that live within and upon us.

Advances in Cell Therapies

It has been more than four decades since cells were first used successfully in bone marrow and organ transplants, but the strategies envisioned today are more complex, involving manipulating cells based on new knowledge of how genes program their development and inner workings.

Cells of the immune system are among those that naturally carry out critical functions, but researchers are working on manipulating them to create better-targeted and more effective therapies. For instance, immune responses directed against cancer often are weak, so scientists are engineering and growing populations of immune cells that target specific molecules found on cancer cells. Already, remarkable recoveries from deadly leukemia have been credited to these new experimental treatments.

Bacterial cells also are showing promise for therapy. In recent years, scientists have come to appreciate that 90 percent of the cells living within and on our bodies are bacteria and that these microbes interact with our own cells and affect our health.

The potential of bacteria to treat disease has been demonstrated dramatically by the recent use of fecal transplants to introduce communities of health-promoting bacteria into patients with recurrent Clostridium difficile infections, a serious gastrointestinal condition that can be life-threatening. Combinations of bacteria that also are engineered to fight inflammation might prove to be even more effective in treating Crohn’s disease and other inflammatory bowel diseases, according to the UCSF scientists.

Other “killer apps” for cell therapies might include combinations of bacterial and human engineered cells. For instance, to control weight gain, gut bacteria might be deployed to convert certain carbohydrates into non-digestible forms, and also to signal engineered human cells lining the epithelial walls to trigger a program that sends a message to the brain that appetite has been satisfied.

Still, many engineering and regulatory challenges to cell therapy remain, the authors concede.

Scientists want to be able to reliably control many aspects of cells, including their activation, population growth, programmed death, migration to specific sites in the body, interactions and communications with other cells, production of small therapeutic molecules, and decision making.

While the complexity of cells makes many scientists leery of cell therapies, the authors said, this complexity might make cell therapies more predictable than other drugs, because complicated, naturally occurring feedback circuits tend to restrict cellular activity. Just as cells already use molecular circuits to act very precisely, researchers ought to be able develop a systematic understanding of the cell’s control modules to tune and reshape how cells behave.

“If small molecules and biologics are tools, then cells are carpenters — and architects and engineers as well,” Fischbach said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Autoimmune Disease Strategy Emerges from Immune Cell Discovery
UCSF experiments halt pancreas destruction in mouse model of diabetes.
Wednesday, September 11, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Intestinal Bacteria May Fuel Inflammation and Worsen HIV Disease
Changes in intestinal bacteria may help explain why successfully treated HIV patients still experience life-shortening chronic diseases.
Friday, July 12, 2013
Prenatal Maternal Antibodies Affect Child Development
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.
Wednesday, July 10, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Depression Linked to Telomere Enzyme, Aging, Chronic Disease
The first symptoms of major depression may be behavioral, but the common mental illness is based in biology — and not limited to the brain.
Thursday, May 23, 2013
Program for Breakthrough Biomedical Research to Celebrate 15 Years
A program that fosters basic science projects of potentially high impact is celebrating 15 years of discovery at UC San Francisco.
Tuesday, May 21, 2013
Scientific News
Boosting Breast Cancer Treatment
To more efficiently treat breast cancer, scientists have been researching molecules that selectively bind to cancer cells and deliver a substance that can kill the tumor cells, for several years.
Research Finding Could Lead to Targeted Therapies for IBD
Findings published online in Cell Reports.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos