Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellular Gatekeepers Do More than Open Doors for Drugs, UCSF Study Finds

Published: Monday, April 08, 2013
Last Updated: Monday, April 08, 2013
Bookmark and Share
Discovery could change the way we design medications and shed light on side effects.

The cellular gatekeepers that escort the most common pharmaceuticals into our cells continue to work within the cells as well, according to a UC San Francisco discovery that could transform drug design and lead to new ways to treat disease.

Almost half of approved pharmaceuticals — for cancer, heart failure, inflammatory diseases, and others — act through gatekeepers on cell surfaces known as G-protein-coupled receptors (GPCRs). More than 1,000 specific GPCR proteins play roles in nerve signaling, immune responses, sensory perception and many other physiological phenomena governed by the trillions of cells within our bodies.

A team led by UCSF cell biologist Mark von Zastrow, MD, PhD, now has demonstrated that these receptor proteins can remain active longer than expected — even after being pulled into the cell after the attachment of a drug or natural activator. The researchers also demonstrated the value of a new way to study the receptors once they’re inside the cell, one which may shed light on why therapeutics have unexpected effects or varying degrees of effectiveness, according to von Zastrow. The study appeared in the March 28 issue of Nature.

“From the standpoint of drug development, this may open a vast new range of targets, involving the cellular machinery that determines whether or not these key receptor molecules are present on the cell surface,” said von Zastrow, a cell biologist who holds the Friends of LPPI Endowed Chair for Research in Schizophrenia and Depression at UCSF.

Using small, genetically engineered “nanobodies” — tiny antibodies similar to those naturally present in camels, but in few other animals — the researchers were able to trace short-lived chemical liaisons between molecules and to demonstrate that a GPCR known as the beta-adrenergic receptor remains active for minutes after it is internalized within the cell. The same receptor often has served as a model for studies of GPCRs, including studies by Brian K. Kobilka, MD, of Stanford University and Robert J. Lefkowitz, MD, of Duke University, who shared the 2012 Nobel Prize in Chemistry for discoveries related to GPCRs.

Many drugs mimic the shapes of natural signaling molecules and block or activate specific GPCRs. When activated, the receptor acts upon another protein — its own specific partner within a class of enzymes known as G proteins. In a chain reaction, G proteins then initiate their own effects downstream in the cell’s biochemical pathways.

The small size and flexibility of the engineered nanobodies allow them to attach to parts of proteins that other antibodies can’t reach. Von Zastrow’s team developed one fluorescent nanobody to bind selectively to the transitional, activated form of the beta adrenergic receptor, and another to bind to the activated form of its G protein. This enabled the researchers to trace the receptors’ activity as they moved inside the cell from the cell surface.

Noting that different drugs can have different effects, even when targeting the same receptor, von Zastrow suggests that nanobodies might help drug developers gain insight into whether these differences are caused by attachments to different transient shapes formed by GPCRs. The engineered nanobodies could serve as tools to tag key activated forms of GPCRs as the receptors interact with other molecules. Nanobodies might even be adaptable for high-throughput drug screening, von Zastrow suggested.

Tracking GPCRs in the Cell

UCSF postdoctoral fellow Roshanak Irannejad, PhD, who performed most of the key experiments and was first author on the paper, used isoproterenol — a drug for treating slow heart beat — to activate the beta-adrenergic receptor and trace activity over time and space, on and within the cells of a human kidney cell line.

Von Zastrow is an expert on endosomes, small membranous sacs pinched off from cell membranes and taken into cells. Each cell may contain 1,000 or more endosomes. Different endosomes contain different molecules. GPCRs were thought to be inactive within endosomes, where they awaited one of two fates — being sent to the cell’s trash heap, or being recycled to the cell surface. Once activated, GPCRs are taken into the cell via endosomes.

“It was previously thought that once the receptor is taken away from the cell’s surface that it no longer does anything until it is recycled back to the surface later,” he said. “Our data clearly show that’s not true — the internalized receptors actually are active and doing specific things within cells.”

Von Zastrow speculates that endosomes might sometimes help redeploy GPCRs to different parts of the cell surface where they are needed, a function that might prove especially valuable to oddly shaped cells such as neurons, which have long, branching processes — axons and dendrites — and large surface areas. Drugs might one day be targeted to manipulate the internalization and movement of specific GPCRs via endosomes, von Zastrow said.

Other UCSF authors of the Nature report include assistant professors Bo Huang, PhD, and Hana El-Samad, PhD; and postdoctoral fellows Jin Tomshine PhD, Jonathan Tomshine PhD, and Michael Chevalier PhD. Collaborators from the University of Michigan, the University of Copenhagen and Vrije Universiteit Brussel, in Belgium, participated in the study.

The research was funded by the National Institutes of Health and the American Heart Association.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Autoimmune Disease Strategy Emerges from Immune Cell Discovery
UCSF experiments halt pancreas destruction in mouse model of diabetes.
Wednesday, September 11, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Intestinal Bacteria May Fuel Inflammation and Worsen HIV Disease
Changes in intestinal bacteria may help explain why successfully treated HIV patients still experience life-shortening chronic diseases.
Friday, July 12, 2013
Prenatal Maternal Antibodies Affect Child Development
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.
Wednesday, July 10, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Depression Linked to Telomere Enzyme, Aging, Chronic Disease
The first symptoms of major depression may be behavioral, but the common mental illness is based in biology — and not limited to the brain.
Thursday, May 23, 2013
Program for Breakthrough Biomedical Research to Celebrate 15 Years
A program that fosters basic science projects of potentially high impact is celebrating 15 years of discovery at UC San Francisco.
Tuesday, May 21, 2013
UCSF Scientists Use Human Stem Cells to Generate Immune System in Mice
Raising hopes for cell-based therapies, UC San Francisco researchers have created the first functioning human thymus tissue from embryonic stem cells in the laboratory.
Friday, May 17, 2013
Tumor-Activated Protein Promotes Cancer Spread
Researchers report that cancers physically alter cells in the lymphatic system to promote the spread of disease.
Tuesday, May 14, 2013
Scientific News
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!