Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Symposium Highlights Epigenetic Effects of Milk

Published: Tuesday, April 09, 2013
Last Updated: Tuesday, April 09, 2013
Bookmark and Share
It seems the ads were right. A milk mustache is a good thing to have. Animal and dairy scientists have discovered that drinking milk at an early age can help mammals throughout their lives.

But understanding exactly how milk affects the body is a complicated story of hormones, antibodies and proteins, as well as other cells and compounds researchers have not yet identified.

Learning how milk affects offspring was the subject of the Lactation Biology Symposium, held as part of the 2012 Joint Annual Meeting in Phoenix, AZ. The presentations were summarized in a recent paper in the Journal of Animal Science.

The presentations focused on epigenetics, or how gene expression changes based on factors like environment or diet. Epigenetic changes modify when or how certain traits are expressed.

The first presenter, Dr. Frank Bartol from Auburn University, explained how certain hormones, called lactocrines, in pig’s milk affect gene expression in piglets. Bartol said lactrocrines could modify gene expression in the reproductive systems; however, Bartol said the specific effects of lactocrines are still being studied.

In the next presentation, Dr. Harald Hammon, from the Leibniz Institute for Farm Animal Biology, explained how drinking milk affects future nutrition. According to Hammon, the milk produced in the first few days after birth, called colostrum, contains growth factors that help young calves better digest and absorb lactose and glucose. Hammon called for more research into identifying these factors and better describing their effects.

Studying milk is important not just for studying future fertility and nutrition, but future milk production as well. Dr. Paul Kenyon, from Massey University in New Zealand, suggested that either underfeeding or overfeeding milk could reduce milk production in the offspring. Though the differences in milk yield were small, there could still be an economic difference for dairy farmers.

The research presented at the Lactation Biology Symposium could have implications for human health as well. Dr. Katie Hinde, from Harvard University, revealed how the components of mother’s milk could alter infant behavior and cell development through epigenetic mechanisms. In Hinde’s studies of rhesus monkeys, infants who had mothers producing milk higher in milk energy and cortisol were more active, playful, exploratory and bold.

“Milk is, therefore, not merely food that allows the body to grow but it contains constituents that help build the brain and provide the energy that allows infants to be behaviorally active,” wrote K. M. Daniels et. al. in a review of the Lactation Biology Symposium.

Research into milk could help researchers better understand farm animals, the dairy industry and human health. Figuring out which compounds are found in milk and how they affect gene expression in offspring could advance knowledge in body development at all stages of life.

“At present there are far more questions than answers,” Bartol said in an interview. “However, we are making progress.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Scientists Uncover Why Hepatitis C Vaccine is Difficult to Make
Scientists have uncovered one reason why a successful hepatitis C vaccine continues to be elusive.
Molecular Origins of Dust Mite Allergy Discovered
Scientists have identified molecules of house dust mites that are targeted by the immune system of children, developing allergic rhinitis and asthma.
Immunotherapy Technique Holds Promise for Curing Food Allergies
Scientists develop immunotherapy technique that almost eliminating allergic response and anaphylactic response in food-allergic mice.
Antibodies from Ebola Survivors Neutralize Virus, Protect Lab Mice
Scientists discover antiboides generated from the blood of Ebola survivors can strongly combat the virus in the lab.
Using CRISPR to Accelerate Search for HIV Cure
Gene-editing platform makes it easier to create HIV-resistant immune cells.
Sustained SIV Remission Achieved in Monkeys
Experimental treatment boosts monkey immune system to force SIV into sustained remission.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos