Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Inovio Pharmaceuticals & U.S. Army Receive $3.5 Million Biodefense Grant

Published: Thursday, April 11, 2013
Last Updated: Thursday, April 11, 2013
Bookmark and Share
Inovio to advance painless device to simultaneously deliver multiple vaccines using electroporation technology.

Inovio Pharmaceuticals, Inc. has been selected to receive a $3.5 million grant from the National Institute of Allergy and Infectious Diseases (NIAID) to advance the development of its next generation DNA vaccine delivery device capable of simultaneously administering multiple synthetic vaccines via skin surface electroporation. Inovio is collaborating with Dr. Connie Schmaljohn, Chief Scientist at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The goal of this public/private partnership is to develop a device that would facilitate rapid vaccination of U.S. troops stationed around the world against multiple infectious diseases and protect civilian populations from pandemic threats.

Dr. J. Joseph Kim, Inovio's president & CEO, said, "This new device would provide a means to rapidly and painlessly deliver multiple vaccines simultaneously to large groups of people. This collaboration builds on Inovio's strong relationship with Dr. Schmaljohn and her team at USAMRIID in which Inovio is bringing medical innovation to several biodefense efforts. Moreover, the advancements from this project will enable rapid and efficient delivery of Inovio's SynCon® vaccines for universal flu, HIV, and other infectious diseases on a mass scale."

The Inovio team of researchers has been collaborating with USAMRIID scientists to advance a DNA vaccine for the Lassa virus, which the DOD has designated as a "Category A" pathogen. In previous testing, an optimized DNA vaccine for the Lassa virus delivered by surface electroporation demonstrated complete protection against a virus challenge in both guinea pig and non-human primate disease models. Although prior results are highly encouraging and electroporation delivery is very tolerable from a patient perspective, improvements are still needed to make the technology more suitable for multiple vaccine administrations and mass vaccinations.

This NIAID grant builds on a 2011 Small Business Innovation Research Grant in which Inovio demonstrated a delivery device that was designed to deliver two separate DNA vaccines simultaneously. In this new program, Inovio will develop the multi-vaccine electroporation delivery device to address biodefense vaccine targets – notably to advance the Lassa virus vaccine through to clinical studies.

The research effort will investigate the novel simultaneous delivery of multiple DNA vaccines — final testing will use the Lassa virus and other arenaviruses — at distinct spatial sites while avoiding immune interference between vaccines. In addition, this new device platform could significantly increase the dose of vaccine delivered at one time which is a current limitation in vaccine delivery to the skin. The new skin surface device resulting from this research will leverage Inovio's latest surface DNA vaccine delivery technology, based on the company's proprietary electroporation delivery platform which uses millisecond electrical pulses to dramatically improve cellular uptake of the vaccine and resulting immune responses. Inovio vaccines delivered with electroporation devices for cancer and infectious diseases have previously demonstrated best in class T-cell and antibody responses in clinical studies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Inovio Pharmaceutical's DNA Vaccine for the MERS Virus Induces Robust Immune Response
No vaccine exists for the MERS virus that has killed 42% of those infected.
Monday, December 02, 2013
Inovio Pharmaceuticals' Potent hTERT DNA Cancer Vaccine Shows Potential to Reduce Tumors and Prevent Tumor Recurrence
Mice and monkey study demonstrates robust and broad immune responses.
Thursday, July 25, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!