Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Blocking a Key Protein Gives Boost to Immune System

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
UCLA scientists have shown that temporarily blocking a protein critical to immune response actually helps the body clear itself of chronic infection.

Published in the April 12 edition of the journal Science, the finding suggests new approaches to treating persistent viral infections like HIV and hepatitis C.

The research team studied type-1 interferons (IFN-1), proteins released by cells in response to disease-causing organisms. These proteins enable cells to talk to each other and orchestrate an immune response against infection. Constant IFN-1 signaling is also a trademark of chronic viral infection and disease progression, particularly in HIV.

"When cells confront viruses, they produce type-1 interferons, which trigger the immune system's protective defenses and set off an alarm to notify surrounding cells," said principal investigator David Brooks, an assistant professor of microbiology, immunology and molecular genetics at UCLA's David Geffen School of Medicine and the UCLA College of Letters and Science. "Type-1 interferon is like the guy in the watchtower yelling 'red alert' when the marauders try to raid the castle."

Scientists have long viewed IFN-1 as beneficial, because it stimulates antiviral immunity and helps control acute infection. Blocking IFN-1 activity, they reasoned, would allow infection to run rampant through the immune system.

On the other hand, prolonged IFN-1 signaling is linked to many chronic immune problems. The research team wondered whether obstructing the signaling pathway would enable the immune system to recover enough to fight off chronic infection.

To test this theory, Brooks and his colleagues injected mice suffering from chronic viral infection with an antibody that temporarily blocked IFN-1 activity.

Much to their surprise, they discovered that giving the immune system a holiday from IFN-1 boosted the body's ability to fight the virus. Stunningly, the respite also reversed many of the immune problems that result from chronic infection, such as a rise in proteins that suppress immune response, continuous activation of the immune system and disruption of lymph tissue.

The findings fly in the face of past studies that suggest eliminating IFN-1 activity in mice leads to severe, lifelong infection.

"What we saw was entirely illogical," Brooks admitted. "We'd blocked something critical for infection control and expected the immune system to lose the fight against infection. Instead, the temporary break in IFN-1 signaling improved the immune system's ability to control infection. Our next step will be to figure out why and how to harness it for therapies to treat humans."

"We suspect that halting IFN-1 activity is like pushing the refresh button," said first author Elizabeth Wilson, a UCLA postdoctoral researcher. "It gives the immune system time to reprogram itself and control the infection."

Uncovering this mechanism could offer potential for new therapies to tackle viruses like HIV and hepatitis C, according to Brooks. The team's next step will be to pinpoint how to sustain IFN-1's control of the virus while blocking the negative impact that chronic IFN-1 activity wreaks on the immune system.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Autoimmune Disease Strategy Emerges from Immune Cell Discovery
UCSF experiments halt pancreas destruction in mouse model of diabetes.
Wednesday, September 11, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Intestinal Bacteria May Fuel Inflammation and Worsen HIV Disease
Changes in intestinal bacteria may help explain why successfully treated HIV patients still experience life-shortening chronic diseases.
Friday, July 12, 2013
Prenatal Maternal Antibodies Affect Child Development
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.
Wednesday, July 10, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Depression Linked to Telomere Enzyme, Aging, Chronic Disease
The first symptoms of major depression may be behavioral, but the common mental illness is based in biology — and not limited to the brain.
Thursday, May 23, 2013
Program for Breakthrough Biomedical Research to Celebrate 15 Years
A program that fosters basic science projects of potentially high impact is celebrating 15 years of discovery at UC San Francisco.
Tuesday, May 21, 2013
UCSF Scientists Use Human Stem Cells to Generate Immune System in Mice
Raising hopes for cell-based therapies, UC San Francisco researchers have created the first functioning human thymus tissue from embryonic stem cells in the laboratory.
Friday, May 17, 2013
Tumor-Activated Protein Promotes Cancer Spread
Researchers report that cancers physically alter cells in the lymphatic system to promote the spread of disease.
Tuesday, May 14, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!