Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH-Developed Candidate Dengue Vaccine Shows Promise in Early-Stage Trial

Published: Monday, April 29, 2013
Last Updated: Monday, April 29, 2013
Bookmark and Share
The trial results appeared in the April 1 issue of the Journal of Infectious Diseases.

A candidate dengue vaccine developed by scientists at the National Institutes of Health has been found to be safe and to stimulate a strong immune response in most vaccine recipients, according to results from an early-stage clinical trial sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the NIH.

Dengue fever, prevalent in many tropical and subtropical regions of the world, is caused by any of four related viruses - DENV-1, DENV-2, DENV-3 and DENV-4 - that are transmitted to humans by Aedes mosquitoes.

The World Health Organization estimates that every year, 50 million to 100 million cases of dengue occur worldwide, resulting in 500,000 hospitalizations of patients with severe disease, many of them in children.

Infection with one dengue virus results in immunity to that specific virus but not to the other three. Research shows that the likelihood of severe disease increases when a person is subsequently infected with a different dengue virus.

This observation suggests that the ideal dengue vaccine would be tetravalent - that is, protective against all four dengue viruses.

"The global burden of dengue is enormous - and it is growing," said NIAID director Anthony S. Fauci, M.D. "We are cautiously optimistic about these recent clinical trial results with this candidate tetravalent vaccine developed at NIAID; however, much more work still needs to be done."

The Phase I clinical trial (, launched in July 2010 and led by principal investigator Anna Durbin, M.D., at Johns Hopkins Bloomberg School of Public Health in Baltimore, tested a single dose of each of four versions of the investigational dengue vaccine TetraVax-DV.

The vaccine was developed by scientists in NIAID's Laboratory of Infectious Diseases. It is a live-attenuated vaccine, which means that the viruses it contains are weakened enough such that they do not cause illness but still can induce an immune response. Each of the four vaccines tested included different mixtures of components designed to protect against all four dengue viruses.

The Phase I study was conducted in Baltimore; Burlington, Vt.; and Washington, D.C. The final study analysis included 112 healthy men and women ages 18 to 50 years who had not previously been exposed to dengue or related viruses such as West Nile virus and yellow fever virus.

Participants were randomized into four groups. In each group, 20 volunteers received a single 0.5-milliliter subcutaneous (under the skin) injection of one of the tetravalent candidate vaccine combinations, and eight others received placebo.

All were monitored for immediate adverse reactions for at least 30 minutes after vaccination, and subsequently took their body temperatures three times daily for 16 days to check for possible adverse reactions.

Participants also received a physical exam every other day up to Study Day 16, and then again on study days 21, 28, 42 and 180, when blood tests were also performed.

The researchers found that all four candidate vaccine combinations induced antibody responses against each of the dengue viruses. However, one vaccine combination, TV003, appeared to induce the most balanced antibody response against the dengue viruses.

A single dose of TV003 resulted in an antibody response to all four dengue viruses in 45 percent of participants and against three of the four viruses in an additional 45 percent. Overall, an immune response to at least three viruses was seen in 90 percent of vaccinees given TV003.

"What is promising about TV003 is that it elicited solid antibody responses after just one dose," explained Stephen Whitehead, Ph.D., of NIAID's Laboratory of Infectious Diseases, who led the development of the vaccine candidates. "Other vaccines in development require two or three injections at higher doses to achieve similar results."

All four candidate tetravalent vaccines were found to be safe, and no participants experienced fever or dengue-like illness after vaccination. The most common side effect was a faint rash (in 64 percent of vaccinees and none of the placebo recipients) consisting of small, non-painful bumps on the arms and torso that resolved within five to seven days.

The presence of the rash appeared to correlate with being white and having a stronger immune response to vaccination, according to the researchers. Ninety percent of white vaccinees experienced a vaccine-related rash while only 35 percent of African-American vaccinees developed a rash.

Further, 97 percent of white vaccine recipients (42 of 43) developed antibodies to at least three of the dengue viruses, compared with 60 percent of African-American vaccine recipients (22 of 37). It is unclear what caused this difference, but previous studies of severe dengue outbreaks in Brazil, Cuba and Haiti suggest that black people may have some inherent protection from dengue infection.

Alternatively, unknown factors may have resulted in a weaker antibody response to the vaccine among African-American participants. Additional research to evaluate racial differences in dengue infection and antibody response rates to dengue vaccines is needed, the authors wrote.

"The results of this Phase I dengue vaccine study look very promising, and NIAID scientists and their partners are pursuing further development of TV003," said Kathryn Zoon, Ph.D., director of NIAID's Division of Intramural Research.

The researchers are conducting studies to further evaluate the vaccine's safety and ability to stimulate an immune response in healthy volunteers ( and in people who have been infected previously ( by dengue or related viruses.

TV003's inexpensive production cost - less than $1 per dose - is critical to its potential use in developing countries, noted Dr. Whitehead. Manufacturers in Brazil, India and Vietnam - countries where dengue is prevalent - have licensed the vaccine technology for production and further evaluation. Phase II trials to evaluate the safety of TV003 ( and its capacity to create an immune response will begin soon in Brazil and Thailand.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
Scientific News
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Four Gut Bacteria Decrease Asthma Risk in Infants
New research by scientists at UBC and BC Children’s Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos