Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Succinate Levels Linked to Immune Response and Inflammation

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Metabolic intermediate plays major role in alerting the immune system - measuring succinate levels may prove effective diagnostic tool in cancer.

Along the path from food to energy, intermediate molecules emerge that form the starting materials for the next step. Traditionally, these intermediates were viewed simply as building blocks — essential for the process, but otherwise inert.

But recently, a team of researchers including senior associate member Ramnik Xavier and Clary Clish, director of the Broad’s Metabolite Profiling Platform, revealed that one of these metabolic intermediates, known as succinate, plays a key role in alerting the body’s immune system — and may provide a crucial link between chronic inflammation, autoimmune disease, and cancer.

“Succinate is an important danger signal. It’s a good marker for cell stress,” said Xavier, a co-senior author of the study, recently published in Nature. The study linked high-levels of succinate to the production of an immune protein that triggers inflammation. Because succinate can be measured in blood, this finding may open the door to new diagnostics that measure immune responses.

The foundation for this discovery was laid by senior author Luke O’Neill, a professor at Trinity College in Dublin, who first observed that certain metabolic pathways in immune cells became highly active after the cells were stimulated with bacteria. The triggering of these pathways suggested the immune cells might be shifting their metabolism in a way previously thought to be exclusive to cancer cells.

One of the hallmarks of cancer cells is their ability to break down glucose at a vastly higher rate than normal cells. While most cells rely on oxygen to break down food, cancer cells can also ferment glucose — a less efficient process that does not require oxygen — to generate fuel. This metabolic shift allows them to adapt to the oxygen-deficient conditions inside tumors. The phenomenon, known as the Warburg effect, enables rapidly dividing tumor cells to generate the essential biological building blocks they need to grow. O’Neill also noted high levels of succinate in these same immune cells, and wondered what role this intermediate product might be in the metabolic shift.

Xavier, who specializes in the study of autoimmune disease, was intrigued. He offered to establish a collaborative effort with scientists at the Broad to help identify the biological circuit that might enable this metabolic shift and cause the accumulation of succinate.

Working with Xavier, Clish and the members of the Broad’s Metabolite Profiling Platform discovered that the high levels of succinate were a result of the shift and lead to an increase in the production of interleukin 1-beta, an immune protein linked to pain, inflammation, and autoimmune disease.

“Multiple studies have shown that chronic inflammation is a precursor event for several epithelial cancers,” says Xavier. “This is evidence that some of the same pathways that accelerate the progression of tumors are also operational in innate immunity.” What’s more, Xavier believes that succinate may not be the only the immune signal that plays a role in disease. Together, Xavier, Clish, and O’Neill are expanding their research to include other immune signals.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Develop a New Means of Killing Harmful Bacteria
Engineered particles are capable of producing toxins that are deadly to targeted bacteria.
Friday, June 26, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
Scientists Make Connection Between Genetic Variation and Immune System
Researchers demonstrate how genetic variations can influence immune cell function.
Tuesday, May 13, 2014
Taking Immune Cells for a Test Drive
Combining biological experimentation on human white blood cells with advanced computational methods can help explain the functional impact of human genetic variation on immune disease.
Monday, March 17, 2014
Charting Microbial Ecosystem of Crohn’s Disease
Study analyzed the microbiomes of 447 newly-diagnosed patients with Crohn’s and 221 healthy individuals.
Thursday, March 13, 2014
Circuitry of Cells Involved in Immunity, Autoimmune Diseases Exposed
Connections point to interplay between salt and genetic factors.
Tuesday, June 18, 2013
Surveying Cells, One At a Time
When studying any kind of population — people or cells — averaging is a useful, if flawed, form of measurement.
Wednesday, May 22, 2013
Scientific News
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!