Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Identify Gene that Allows Malaria Parasite to Survive in Mosquitoes

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
NIAID researchers have identified a gene that helps malaria-causing parasites elude the mosquito immune system, allowing the microbes to transmit efficiently to people when the insect takes a blood meal.

Background
Malaria is caused by a single-celled parasite from the genus Plasmodium. The parasite undergoes several developmental stages inside the mosquito. The bite of the infected insect then transmits the disease-causing parasite to people. Malaria caused by P. falciparum, one of four Plasmodium strains that commonly infect people,mostly affects young children in Africa and causes more than half a million deaths each year, according to the World Health Organization.

Certain types of mosquitoes are resistant to malaria infection. When parasites come into contact with the serum-like liquid that flows through the mosquito’s circulatory system, the insect’s immune system interacts with the surfaces of the parasites and kills them.

Several years ago, researchers noted that a particular strain of Anopheles gambiae mosquito can kill many Plasmodium species, including several P. falciparum strains. But some P. falciparum lines from West Africa survived in the resistant A. gambiae strain. More recent work attributed these striking differences in survival to interactions between the parasites and the mosquito immune system.

Results of Study
To better understand how some parasites can evade the mosquito immune system, NIAID researchers led by Carolina V. Barillas-Mury, M.D., Ph.D., in NIAID’s Laboratory of Malaria and Vector Research studied genetic differences between P. falciparum lines from Brazil and Ghana. Malaria-resistant mosquitoes with healthy immune systems effectively kill the Brazil line, but when the mosquito’s immune system is disrupted, the parasites survive. In contrast, the mosquito immune system seemingly did not detect the parasites from the Ghana line.

By analyzing the offspring of a genetic cross between these two lines, the scientists identified the gene that makes some parasites invisible to the mosquito immune system.  The gene, called Pfs47, is expressed on the surface of the fertilized form of the malaria parasite. African parasites engineered to lack this key gene are readily detected by the mosquito and eliminated.

Significance
The NIAID scientists pinpointed the gene that allows P. falciparum to efficiently infect mosquitoes and be transmitted to people. The parasite’s ability to evade the mosquito immune system may contribute to the high rate of malaria transmission in some geographic areas where the disease is prevalent.  The researcher’s findings potentially could help scientists devise ways to recruit the mosquito immune system to prevent malaria transmission to people.

Next Steps
The NIAID scientists are investigating whether antibodies against the gene can block its function and allow the mosquito immune system to recognize and eliminate malaria-causing parasites.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
Thursday, July 30, 2015
NIAID Study Identifies Immune Sensors of Malnutrition
Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases.
Monday, January 27, 2014
Scientific News
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!