Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Depression Linked to Telomere Enzyme, Aging, Chronic Disease

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
The first symptoms of major depression may be behavioral, but the common mental illness is based in biology — and not limited to the brain.

In recent years, some studies have linked major, long-term depression with life-threatening chronic disease and with earlier death, even after lifestyle risk factors have been taken into account.

Now a research team led by Owen Wolkowitz, MD, professor of psychiatry at UC San Francisco, has found that within cells of the immune system, activity of an enzyme called telomerase is greater, on average, in untreated individuals with major depression. The preliminary findings from his latest, ongoing study was reported Wednesday at the annual meeting of the American Psychiatric Association in San Francisco.

Telomerase is an enzyme that lengthens protective end caps on the chromosomes’ DNA, called telomeres. Shortened telomeres have been associated with earlier death and with chronic diseases in population studies.

The heightened telomerase activity in untreated major depression might represent the body’s attempt to fight back against the progression of disease, in order to prevent biological damage in long-depressed individuals, Wolkowitz said.

The researchers made another discovery that may suggest a protective role for telomerase. Using magnetic resonance imaging (MRI), they found that, in untreated, depressed study participants, the size of the hippocampus, a brain structure that is critical for learning and memory, was associated with the amount of telomerase activity measured in the white blood cells. Such an association at a single point in time cannot be used to conclude that there is a cause-and-effect relationship with telomerase helping to protect the hippocampus, but it is plausible, Wolkowitz said.

Telomerase Activity and Antidepressants

Remarkably, the researchers also found that the enzyme’s activity went up when some patients began taking an antidepressant. In fact, depressed participants with lower telomerase activity at baseline — as well as those in whom enzyme activity increased the most with treatment — were the most likely to become less depressed with treatment.

“Our results are consistent with the beneficial effect of telomerase when it is boosted in animal studies, where it has been associated with the growth of new nerve cells in the hippocampus and with antidepressant-like effects, evidenced by increased exploratory behavior,” Wolkowitz said. He cautions that his new findings are preliminary due to the small size of the study and must be confirmed through further research.

The researchers also measured telomere length in the same immune cells. Only very chronically depressed individuals showed telomere shortening, Wolkowitz said.

“The longer people had been depressed, the shorter their telomeres were,” he said. “Shortened telomere length has been previously demonstrated in major depression in most, but not all, studies that have examined it. The duration of depression may be a critical factor.”

Ongoing Study

The 20 depressed participants enrolled in the study had been untreated for at least six weeks and had an average lifetime duration of depression of about 13 years. After baseline evaluation and laboratory measures, 16 of the depressed participants were treated with sertraline, a member of the most popular class of antidepressants, the serotonin-selective-reuptake-inhibitors (SSRIs), and then evaluated again after eight weeks. There were 20 healthy participants who served as controls.

The ongoing study still is accepting depressed participants who are not now taking antidepressants.

Wolkowitz’s team also studies chronic inflammation and the biochemical phenomenon of oxidative stress, which he said have often been reported in major depression. Wolkowitz is exploring the hypothesis that inflammation and oxidative stress play a role in telomere shortening and accelerated aging in depression.

“New insights into the mechanisms of these processes may well lead to new treatments — both pharmacological and behavioral — that will be distinctly different from the current generation of drugs prescribed to treat depression,” he said. “Additional studies might lead to simple blood tests that can measure accelerated immune-cell aging."

Wolkowitz’s research is funded by the National Institutes of Health. He is on the scientific advisory board of Telome Health Inc., a private biotechnology company.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Autoimmune Disease Strategy Emerges from Immune Cell Discovery
UCSF experiments halt pancreas destruction in mouse model of diabetes.
Wednesday, September 11, 2013
Tuberculosis and Parkinson’s Disease Linked by Unique Protein
UCSF researchers seek way to boost protein to fight both diseases.
Wednesday, September 11, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Immune System Molecule Promotes Tumor Resistance
A team of scientists has shown for the first time that a signaling protein involved in inflammation also promotes tumor resistance to anti-angiogenic therapy.
Tuesday, August 06, 2013
Intestinal Bacteria May Fuel Inflammation and Worsen HIV Disease
Changes in intestinal bacteria may help explain why successfully treated HIV patients still experience life-shortening chronic diseases.
Friday, July 12, 2013
Prenatal Maternal Antibodies Affect Child Development
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.
Wednesday, July 10, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Developmental Protein Plays Role in Spread of Cancer
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating metastasis.
Tuesday, June 18, 2013
Program for Breakthrough Biomedical Research to Celebrate 15 Years
A program that fosters basic science projects of potentially high impact is celebrating 15 years of discovery at UC San Francisco.
Tuesday, May 21, 2013
UCSF Scientists Use Human Stem Cells to Generate Immune System in Mice
Raising hopes for cell-based therapies, UC San Francisco researchers have created the first functioning human thymus tissue from embryonic stem cells in the laboratory.
Friday, May 17, 2013
Scientific News
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Gene-Edited Immune Cells Treat ‘Incurable’ Leukaemia
A new treatment that uses ‘molecular scissors’ to edit genes and create designer immune cells programmed to hunt out and kill drug resistant leukaemia has been used at Great Ormond Street Hospital (GOSH).

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos