Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Find Link Between Allergic and Autoimmune Diseases in Mouse Study

Published: Tuesday, June 04, 2013
Last Updated: Tuesday, June 04, 2013
Bookmark and Share
Discovery of gene may help scientists better understand diseases such as MS, Crohn’s disease, celiac disease and type 1 diabetes.

Scientists at the National Institutes of Health, and their colleagues, have discovered that a gene called BACH2 may play a central role in the development of diverse allergic and autoimmune diseases, such as multiple sclerosis, asthma, Crohn's disease, celiac disease, and type-1 diabetes.

In autoimmune diseases, the immune system attacks normal cells and tissues in the body that are generally recognized as “self” and do not normally trigger immune responses. Autoimmunity can occur in infectious diseases and cancer.

The results of previous research had shown that people with minor variations in the BACH2 gene often develop allergic or autoimmune diseases, and that a common factor in these diseases is a compromised immune system.

In this study in mice, the Bach2 gene was found to be a critical regulator of the immune system’s reactivity.

The study, headed by researchers at the National Cancer Institute (NCI) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), both part of NIH, and their colleagues appeared online in Nature, June 2, 2013.

The finding that a single component of the immune system plays such a broad role in regulating immune function may explain why people with allergic and autoimmune diseases commonly have alterations in the BACH2 gene, said NCI researcher Rahul Roychoudhuri, M.D. "This may be the first step in developing novel therapies for these disorders."

Studies known as genome-wide association studies, which analyze genetic variants among people to determine whether specific variants are associated with particular traits, were critical to the discovery.

These studies showed that DNA from patients with diverse autoimmune disorders often had minor alterations in the BACH2 gene, which laid the foundation for this research.

“What was exciting was the opportunity to apply cutting-edge technology permitted by the completion of the Human Genome Project,” said NIAMS scientific director John O’Shea, M.D.

O’Shea continued, “Using genome-wide approaches we were able to map the action of Bach2 across all genes. This enabled us to gain a clearer understanding of Bach2’s key role in the immune system.”

The immune system is comprised of a variety of cell types that must act in unison to maintain a healthy balance. White blood cells called CD4+T cells play a dual role within the immune system.

Some CD4+T cells activate immune responses, whereas others, called regulatory T cells, function in the opposite direction by constraining immune responses.

This duality is important because uncontrolled immune responses may result in immune system attacks against the body’s own cells and tissues, which occurs in allergic and autoimmune diseases.

One of the hallmarks of uncontrolled immune responses is excessive tissue inflammation. Although tissue inflammation is a normal part of immune responses, excessive inflammation can lead to tissue and organ damage and may be potentially lethal.

How CD4+T cells become either activating/inflammatory or regulatory is not well understood, according to the researchers.

“We found that the Bach2 gene played a key role in regulating the switch between inflammatory and regulatory cells in mice,” said NIAMS researcher Kiyoshi Hirahara, M.D. “The loss of the Bach2 gene in CD4+ T cells caused them to become inflammatory, even in situations that would normally result in the formation of protective regulatory cells.”

The team found that if mice lacked the Bach2 gene their cells became inflammatory and the mice died of autoimmune diseases within the first few months of life.

When they re-inserted Bach2 (using gene therapy) into Bach2-deficient cells, their ability to produce regulatory cells was restored.

"Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, Bach2 regulates the choice between the two cell types, resulting in its critical role in maintaining the immune system’s healthy balance," said NCI principal investigator, Nicholas P. Restifo, M.D., "It’s apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony."

Restifo suggests that these findings have implications for cancer as well, since cancers co-opt regulatory T cells to prevent their own destruction by antitumor immune responses.

He and his colleagues are now working toward manipulating the activity of the Bach2 gene, with the goal of developing a new cancer immunotherapy.

Also, as this study was in mice, it must be replicated in humans before its findings can be applied in a clinical setting.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
Scientific News
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!