Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BACH2 Helps Orchestrate the Immune Response

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
A gene called BACH2 may affect the development of MS, asthma, Crohn's disease, celiac disease and other allergic and autoimmune diseases.

The immune system has a variety of cell types that act in unison to protect the body from invading microbial threats. Autoimmune diseases—which include type 1 diabetes, psoriasis and multiple sclerosis—arise when this system mistakenly attacks the body’s own tissues. Autoimmunity can also occur in infectious diseases and cancer.

How all the parts of the immune system keep in balance still isn’t well understood. White blood cells called CD4 T cells play a dual role. As these cells mature, they can become one of many types of T cell, each of which has a distinct function. Some CD4 cells activate immune responses. Others, called regulatory T cells, constrain immune responses. When the immune system is out of balance, uncontrolled reactions can lead to attacks against the body’s own cells and tissues. Immune responses cause tissue inflammation, and when immune reactions are uncontrolled, the excessive inflammation can result in tissue and organ damage and may even be lethal.

Previous studies found that people with diverse autoimmune diseases and allergies (in which the immune system attacks a harmless substance such as pollen) often have minor variations in the gene coding for BACH2. BACH2 is a transcription factor, a protein that regulates the activity of genes. A team headed by researchers at NIH’s National Cancer Institute (NCI) and National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) set out to further investigate the role of BACH2 in autoimmune diseases. Their study appeared online in Nature on June 2, 2013.

When the scientists disrupted the gene for BACH2 in mice, the animals appeared normal at birth but died of autoimmune diseases within months. Using genome-wide approaches, the team found that BACH2 has a broad role in regulating immune function. The protein directly binds hundreds of genes in maturing T cells and affects the activity of thousands of genes.

Further experiments showed that BACH2 activity influences whether maturing T cells become inflammatory or regulatory. BACH2 proved essential for the formation of regulatory T cells. It thus plays a major role in suppressing lethal inflammation.

“Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, BACH2 regulates the choice between the 2 cell types, resulting in its critical role in maintaining the immune system’s healthy balance,” says Dr. Nicholas P. Restifo, one of the study’s leaders. “It’s apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony.”

The role of BACH2 in humans still needs to be confirmed. However, these findings may be the first step in developing novel therapies for allergic and autoimmune diseases. The findings may have implications for cancer as well, since cancers can co-opt regulatory T cells to prevent their own destruction.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Sustained SIV Remission Achieved in Monkeys
Experimental treatment boosts monkey immune system to force SIV into sustained remission.
Wednesday, October 26, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Scientific News
New Regulator of Immune Reaction Discovered
Calcium signal in cell nucleus regulates not only many brain functions but also defence reactions of the immune system.
First Steps to Neutralising Zika
Researchers have discovered a highly potent antibody that neutralises Zika infection at a cellular level.
Cell’s ‘Built-In Circuit’ Help Prevent Tumour Growth
Researchers have created cells with a 'built-in genetic circuit' that inhibits tumour growth.
Factors Behind Suppression of Stem Cell Mobilization Revealed
The findings could lead to improvements in transplantation therapy.
Common Virus Helps Fight Liver Cancer
Reovirus, a cause of childhood colds, stimulates the immune system to kill cancerous cells.
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
Targeting Pancreatic Cancer
Cutting-edge technology exploits cancer cells’ vulnerabilities to develop new treatments.
A Genome-wide View of Human DNA Viruses
In this study, Duplex sequencing was used to accurately analyse the genome-wide rate of spontaneous mutation of human adenovirus C5 (HAdv5).
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!