Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BACH2 Helps Orchestrate the Immune Response

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
A gene called BACH2 may affect the development of MS, asthma, Crohn's disease, celiac disease and other allergic and autoimmune diseases.

The immune system has a variety of cell types that act in unison to protect the body from invading microbial threats. Autoimmune diseases—which include type 1 diabetes, psoriasis and multiple sclerosis—arise when this system mistakenly attacks the body’s own tissues. Autoimmunity can also occur in infectious diseases and cancer.

How all the parts of the immune system keep in balance still isn’t well understood. White blood cells called CD4 T cells play a dual role. As these cells mature, they can become one of many types of T cell, each of which has a distinct function. Some CD4 cells activate immune responses. Others, called regulatory T cells, constrain immune responses. When the immune system is out of balance, uncontrolled reactions can lead to attacks against the body’s own cells and tissues. Immune responses cause tissue inflammation, and when immune reactions are uncontrolled, the excessive inflammation can result in tissue and organ damage and may even be lethal.

Previous studies found that people with diverse autoimmune diseases and allergies (in which the immune system attacks a harmless substance such as pollen) often have minor variations in the gene coding for BACH2. BACH2 is a transcription factor, a protein that regulates the activity of genes. A team headed by researchers at NIH’s National Cancer Institute (NCI) and National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) set out to further investigate the role of BACH2 in autoimmune diseases. Their study appeared online in Nature on June 2, 2013.

When the scientists disrupted the gene for BACH2 in mice, the animals appeared normal at birth but died of autoimmune diseases within months. Using genome-wide approaches, the team found that BACH2 has a broad role in regulating immune function. The protein directly binds hundreds of genes in maturing T cells and affects the activity of thousands of genes.

Further experiments showed that BACH2 activity influences whether maturing T cells become inflammatory or regulatory. BACH2 proved essential for the formation of regulatory T cells. It thus plays a major role in suppressing lethal inflammation.

“Although genes have been found that play specific roles in either inflammatory cells or regulatory cells, BACH2 regulates the choice between the 2 cell types, resulting in its critical role in maintaining the immune system’s healthy balance,” says Dr. Nicholas P. Restifo, one of the study’s leaders. “It’s apt that the gene shares its name with the famous composer Bach, since it orchestrates many components of the immune response, which, like the diverse instruments of an orchestra, must act in unison to achieve symphonic harmony.”

The role of BACH2 in humans still needs to be confirmed. However, these findings may be the first step in developing novel therapies for allergic and autoimmune diseases. The findings may have implications for cancer as well, since cancers can co-opt regulatory T cells to prevent their own destruction.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Scientific News
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Probe Detects Histone Modifications in Cells
Scientists have developed an antibody probe that can be used to monitor the dynamics of histone modification.
Gut Pathogens Thrive on Body's Tissue-Repair Mechanism
Researcher have discovered that harm caused by pathogens in the intestinal tract benefit from immune system response to damaged intestinal lining.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!