Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Expelled DNA that Traps Toxins May Backfire in Obese

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.

The research describes the phenomenon and its potential cause, why it may threaten health and how to use this knowledge to develop new therapies for an array of diseases. It was published in Frontiers in Immunology this past spring.

The study is the first to show that the DNA of macrophages, the biggest immune cells, can unravel and move outside the cell to snag invading pathogens. Called extracellular traps, these sticky DNA remnants can occur anywhere, but the study found a troubling number inside rafts of macrophages surrounding dead fat cells in obese mice.

In that extracellular environment, the traps feed a vicious cycle of inflammation, increasing risk of several major diseases, the scientists predict. Uncovering what causes macrophage DNA to unravel, the study included a description indicating new preventative therapies for these diseases may be near at hand.

“Our collaborator, Paul Thompson at Scripps, has developed a new drug that we have shown can block trap formation and cancer growth by inhibiting the process that triggers macrophage DNA to unravel and become traps,” said Scott Coonrod, associate professor at the Baker Institute for Animal Health at Cornell, who oversaw the study.  “We envision someday using this new drug as a preventative therapy for cancer and other inflammation-related diseases.”

A chemical event called hyper-citrillunation appears to cause extracellular trap formation, according to Coonrod’s findings. It occurs when histones, which pack DNA into the nucleus, lose their electrical attraction to DNA, causing the roughly 2-meters-worth of DNA to be propelled outside the cell. While these traps normally help to clean up bacteria following infections, they also have a dark side. They are increasingly being found in diseases that do not have an infectious component, suggesting that, in some cases, traps may actually promote disease progression.

Breast cancer presents a particular concern for people who are overweight, said Coonrod’s collaborator Dr. Andrew Dannenberg at Weill Cornell Medical College. Dannenberg’s team was the first to find crown-like-structures (CLS), donut-shaped chunks of dead fat cells that are surrounded by macrophages, in human breasts. Dannenberg’s work suggests that these structures release inflammatory signals that increase the risk of breast cancer.

“One of macrophages’ jobs is to clean up dead cells,” said Coonrod. “When they come to sites with CLS to vacuum up the dead fat, the environment is full of inflammatory chemicals that promote trap formation. We looked at CLS lesions in breast tissue to see if macrophage traps were there. Our initial findings suggest that they are.”

Inflammation plays a large role in the development of cancer. The Coonrod group is currently looking into the possibility that trap production in CLS lesions promotes inflammation.

“While still in the early stages, these findings are exciting because we have a drug that can block trap production,” said Coonrod. “One could imagine that our anti-trap drug might be used one day to prevent disease by suppressing inflammation in inflammatory environments, such as breast tissue in women who are obese, thereby preventing disease progression.”

The research “Identification of Macrophage Extracellular Trap-Like Structures in Mammary Gland Adipose Tissue: A Preliminary Study,” was published in March and was supported in part by a U.S. Department of Defense Hope Scholar Award, the Breast Cancer Research Foundation and the Botwinick–Wolfensohn Foundation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
TB Bacteria's Trash-Eating Inspires Search for New Drugs
When hijacking a garbage truck, one might as well make use of the trash. That logic drives how tuberculosis-causing bacteria feed, say Cornell scientists.
Tuesday, June 11, 2013
Discovery Could Revolutionize Immunization
Immune cells in newborns appear to be more ready to do battle than previously thought.
Monday, April 29, 2013
Immune Response Linked to Key Enzyme
A family of enzymes may contribute to scientists’ understanding of signaling molecules involved in the body’s immune response.
Friday, April 12, 2013
Inflammation Drives Crohn's Disease, Says Study
Recent studies show marked changes in the composition of the intestinal bacteria in people with CD.
Tuesday, August 21, 2012
Bacteria Employ 'Quality-control' Machinery, say Biomolecular Engineers
Like quality-control managers in factories, bacteria possess built-in machinery that track the shape and quality of proteins trying to pass through their cytoplasmic membranes.
Friday, August 03, 2012
The Force is with us: GEDI Chip Sorts Prostate Cancer Cells
Geometrically Enhanced Differential Immunocapture chip identify and collect cancer cells from a patient's bloodstream.
Friday, June 29, 2012
Immune Cells Found to Counter Obesity-Related Diabetes
Activation of NKT cells reduces inflammation, and also reduces insulin resistance and increases glucose tolerance.
Monday, May 21, 2012
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!