Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Expelled DNA that Traps Toxins May Backfire in Obese

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.

The research describes the phenomenon and its potential cause, why it may threaten health and how to use this knowledge to develop new therapies for an array of diseases. It was published in Frontiers in Immunology this past spring.

The study is the first to show that the DNA of macrophages, the biggest immune cells, can unravel and move outside the cell to snag invading pathogens. Called extracellular traps, these sticky DNA remnants can occur anywhere, but the study found a troubling number inside rafts of macrophages surrounding dead fat cells in obese mice.

In that extracellular environment, the traps feed a vicious cycle of inflammation, increasing risk of several major diseases, the scientists predict. Uncovering what causes macrophage DNA to unravel, the study included a description indicating new preventative therapies for these diseases may be near at hand.

“Our collaborator, Paul Thompson at Scripps, has developed a new drug that we have shown can block trap formation and cancer growth by inhibiting the process that triggers macrophage DNA to unravel and become traps,” said Scott Coonrod, associate professor at the Baker Institute for Animal Health at Cornell, who oversaw the study.  “We envision someday using this new drug as a preventative therapy for cancer and other inflammation-related diseases.”

A chemical event called hyper-citrillunation appears to cause extracellular trap formation, according to Coonrod’s findings. It occurs when histones, which pack DNA into the nucleus, lose their electrical attraction to DNA, causing the roughly 2-meters-worth of DNA to be propelled outside the cell. While these traps normally help to clean up bacteria following infections, they also have a dark side. They are increasingly being found in diseases that do not have an infectious component, suggesting that, in some cases, traps may actually promote disease progression.

Breast cancer presents a particular concern for people who are overweight, said Coonrod’s collaborator Dr. Andrew Dannenberg at Weill Cornell Medical College. Dannenberg’s team was the first to find crown-like-structures (CLS), donut-shaped chunks of dead fat cells that are surrounded by macrophages, in human breasts. Dannenberg’s work suggests that these structures release inflammatory signals that increase the risk of breast cancer.

“One of macrophages’ jobs is to clean up dead cells,” said Coonrod. “When they come to sites with CLS to vacuum up the dead fat, the environment is full of inflammatory chemicals that promote trap formation. We looked at CLS lesions in breast tissue to see if macrophage traps were there. Our initial findings suggest that they are.”

Inflammation plays a large role in the development of cancer. The Coonrod group is currently looking into the possibility that trap production in CLS lesions promotes inflammation.

“While still in the early stages, these findings are exciting because we have a drug that can block trap production,” said Coonrod. “One could imagine that our anti-trap drug might be used one day to prevent disease by suppressing inflammation in inflammatory environments, such as breast tissue in women who are obese, thereby preventing disease progression.”

The research “Identification of Macrophage Extracellular Trap-Like Structures in Mammary Gland Adipose Tissue: A Preliminary Study,” was published in March and was supported in part by a U.S. Department of Defense Hope Scholar Award, the Breast Cancer Research Foundation and the Botwinick–Wolfensohn Foundation.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Wednesday, June 29, 2016
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
TB Bacteria's Trash-Eating Inspires Search for New Drugs
When hijacking a garbage truck, one might as well make use of the trash. That logic drives how tuberculosis-causing bacteria feed, say Cornell scientists.
Tuesday, June 11, 2013
Discovery Could Revolutionize Immunization
Immune cells in newborns appear to be more ready to do battle than previously thought.
Monday, April 29, 2013
Immune Response Linked to Key Enzyme
A family of enzymes may contribute to scientists’ understanding of signaling molecules involved in the body’s immune response.
Friday, April 12, 2013
Inflammation Drives Crohn's Disease, Says Study
Recent studies show marked changes in the composition of the intestinal bacteria in people with CD.
Tuesday, August 21, 2012
Bacteria Employ 'Quality-control' Machinery, say Biomolecular Engineers
Like quality-control managers in factories, bacteria possess built-in machinery that track the shape and quality of proteins trying to pass through their cytoplasmic membranes.
Friday, August 03, 2012
The Force is with us: GEDI Chip Sorts Prostate Cancer Cells
Geometrically Enhanced Differential Immunocapture chip identify and collect cancer cells from a patient's bloodstream.
Friday, June 29, 2012
Immune Cells Found to Counter Obesity-Related Diabetes
Activation of NKT cells reduces inflammation, and also reduces insulin resistance and increases glucose tolerance.
Monday, May 21, 2012
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
New Antibody Therapy Permanently Blocks SIV Infection
An international research team has developed an effective treatment strategy against the HIV-like Simian Immunodeficiency Virus (SIV) in rhesus macaques.
Contribution Increases by Tenfold The Mouse Mutation Resources of One Type Available
The repository provides academic researchers with unique genetic models that are unavailable commercially.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Rare Flu-Thwarting Mutation Discovered
Study finds protein mutation, that is encoded by influenza, causes the virus to lose any defence against the immune system.
Mapping the Human Immune System
Researchers try to harness supercomputers to create the first map of the human immune system.
Antibody Drug Conjugates May Help Personalize Radiotherapy
Biomarker-driven study shows promise in sensitizing HER2 positive tumors to radiation and chemotherapy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos