Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Activartis’ Cancer Immunotherapy Receives Orphan Drug Designation from FDA

Published: Monday, July 01, 2013
Last Updated: Monday, July 01, 2013
Bookmark and Share
The ODD applies specifically to the use of AV0113 for the treatment of malignant glioma, a very aggressive type of brain cancer.

The European drug agency EMA already granted ODD at the end of last year.

In principle, Activartis’ AV0113 Cancer Immunotherapy may be used to fight any type of cancer. The individualized therapeutic technology is based on a patented procedure in which a cancer patient’s immune system is primed to fight the tumor and eventually control its growth. This concept is based on the use of Dendritic Cells, the key regulatory elements of the immune system, that are the same as the tumor tissue derived from the patient.

Active cancer immunotherapy based on Dendritic Cells

AV0113 activates the patient’s immune system, with tumor cells being identified on the basis of their antigens and destroyed. The therapy makes use of elements and mechanisms of the immune system and gets to work where these fail. As tumor cells are the body’s own tissue, the immune system does not normally identify them as dangerous. Activartis’ AV0113 Cancer Immunotherapy “tricks” Dendritic Cells and, consequently, a cancer patient’s immune system, into doing the right thing, i.e. to perceive the tumor as a threat and to trigger adequate defense mechanisms.

The Dendritic Cells are charged with tumor-derived antigens, determinants that distinguish a tumor cell from a normal cell. These antigens are processed by the Dendritic Cell and shuttled to the cell surface in order to present them to T-cells. This, however, is not sufficient to prime an immune response against the tumor antigens. The “trick” referred to above is contacting Dendritic Cells with a microbial danger signal. Certain molecules that are present in microorganisms but not in higher organisms signal to the Dendritic Cell the presence of a microbial invasion in its surroundings and hence danger to the organism.

As tumor cells originate from a cancer patient’s normal cells, they do not provide danger molecules which are recognized by the Dendritic Cell. The critical and unique part of Activartis’ AV0113 technology is exposing tumor antigen-charged Dendritic Cells to one of these danger molecules: lipopolysaccharides, the bacterial endotoxins. This causes the Dendritic Cell to assume a potently immune stimulatory and pro-inflammatory mode of action. Upon returning these Dendritic Cells to the patient, they activate tumor-specific T-cells, most importantly the so-called cytotoxic T-cells, which become able to recognize and destroy tumor cells.

Early results of the Activartis AV0113 trial reveal a promising trend.

At the beginning of 2013, Activartis completed recruitment of 78 brain cancer patients to a multi-centre, randomized, phase II clinical trial. This randomized study aims to deliver safety and efficacy data for the first time. Preliminary results presented at the AACR Annual Meeting (April 6-10, 2013, Washington) revealed a very promising trend suggesting a survival benefit of patients in the AV0113 treatment group compared to the randomized control group.

Confirmation of that trend is expected by the end of 2013. If the trend currently observed is confirmed, AV0113 is bound to become part of the standard therapy for GBM.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Early Results of Activartis AV0113 Cancer Immunotherapy in Glioblastoma Trial Reveal Promising Trend
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and progresses rapidly.
Thursday, April 11, 2013
Scientific News
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Adaptimmune’s NY-ESO-1 TCR-engineered T-Cells Demonstrate Durable Persistence
Study has been published in Nature Medicine.
Iron Regulators Join War on Pathogens
Iron regulatory proteins (IRPs) play an important role in the body’s immune system.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!