Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Possible Goal for New Tuberculosis-Vaccine Identified

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
A new study shows for the first time the essential role of the molecule SOCS3 in the control of Tuberculosis.

This could have impact on the future development of a vaccine.

Tuberculosis is sometimes perceived as a feared killer of the past but is still a dreadful disease of mankind. One third of the world population is infected with the bacteria Mycobacterium tuberculosis that causes the disease. However, Tuberculosis is manifested only in approximately 10 percent of those infected. Still, about 2 million Tuberculosis patients die every year worldwide.

Mycobacterium tuberculosis multiplies inside white blood cells known as macrophages. In infected people who don't develop the Tuberculosis, the immune system either the bacteria or impairs bacterial multiplication. The exact mechanisms behind this are not known in detail, hampering the development of effective vaccines and treatments of the disease. Why the disease is manifested in some individual, but not in others, is not completely understood.

The recent study shows that a molecule called SOCS3 is required for control of the infection. The discovery was done using an experimental infection of mice genetically modified so that they do not express SOCS3 in different immune cells. These mice were dramatically susceptible to the infection with Mycobacterium tuberculosis.

"Like a soldier with two guns the molecule SOCS3 engages in different ways in the combat against Mycobacterium tuberculosis. We were stunned by the fact that the same molecule independently controls diverse mechanisms in different cell types," says Martin Rottenberg, from the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet.

The control of Tuberculosis is hampered by the appearance of antibiotic-resistant strains. Moreover, the Tuberculosis vaccine, developed almost 100 years ago, shows low efficiency against the most common pulmonary disease. An improved understanding of how our immune responses control the infection might be used for the design of new vaccines.

"We speculate that SOCS3 could be a new target for vaccines to improve the protection against Tuberculosis," says Martin Rottenberg.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
Scientific News
Can We Break the Link Between Obesity and Diabetes?
Columbia University researchers identify a key molecule involved in the development of type 2 diabetes.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!