Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Reveal the Clearest New Pictures of Immune Cells

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
Scientists have revealed new images which provide the clearest picture yet of how white blood immune cells attack viral infections and tumours.

They show how the cells, which are responsible for fighting infections and cancer in the human body, change the organisation of their surface molecules, when activated by a type of protein found on viral-infected or tumour cells.

Professor Daniel Davis, who has been leading the investigation into the immune cells, known as natural killers, said the work could provide important clues for tackling disease.

The research, funded by the Medical Research Council (MRC) and Biotechnology and Biological Sciences Research Council (BBSRC), reveals the proteins at the surface of immune cells are not evenly spaced but grouped in clusters - a bit like stars bunched together in galaxies.

Professor Davis, Director of Research at the Manchester Collaborative Centre for Inflammation Research (MCCIR), a partnership between the University and two pharmaceutical companies GlaxoSmithKline and Astra Zeneca, said: “This is the first time scientists have looked at how these immune cells work at such a high resolution. The surprising thing was that these new pictures revealed that immune cell surfaces alter at this scale – the nano scale – which could perhaps change their ability to be activated in a subsequent encounter with a diseased cell.

 “We have shown that immune cell proteins are not evenly distributed as once thought, but instead they are grouped in very small clumps – a bit like if you were an astronomer looking at clusters of stars in the Universe and you would notice that they were grouped in clusters.

“We studied how these clusters or proteins change when the immune cells are switched on – to kill diseased cells. Looking at our cells in this much detail gives us a greater understanding about how the immune system works and could provide useful clues for developing drugs to target disease in the future.”

Until now the limitations of light microscopy have prevented a clear understanding of how immune cells detect other cells as being diseased or healthy.

The team used high quality, super-resolution fluorescence microscopy to view the cells in blood samples in their laboratory to create the still images published in the journal Science Signalling this week.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Finding Should Enhance Treatments that Stop Immune System Attacks
Research published in the journal Immunity describes how regulatory T cells can cure inflammatory disease.
Tuesday, May 19, 2015
Scientific News
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
Antibiotic Use in Early Life Disrupts Gut Microbiota
The use of antibiotics in early childhood interferes with normal development of the intestinal microbiota, shows research conducted at the University of Helsinki.
Easier Diagnosis for Fungal Infection of the Lungs
A new clinical imaging method developed in collaboration with a University of Exeter academic may enable doctors to tackle one of the main killers of patients with weakened immune systems sooner and more effectively.
Mitochondrial Troublemakers Unmasked in Lupus
Drivers of autoimmune disease inflammation discovered in the traps of pathogen-capturing white blood cells.
Important Regulator of Immune System Decoded
Plasma cells play a key role in our immune system. Now scientists at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, and at the Walter and Eliza Hall Institute (WEHI) in Melbourne, Australia, succeeded in characterizing a central regulator of plasma cell function.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!