Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Findings Could Influence the Development of Therapies to Treat Dengue Disease

Published: Monday, August 05, 2013
Last Updated: Monday, August 05, 2013
Bookmark and Share
New research into the fight against Dengue may influence the development of anti-viral therapies that are effective against all four types of the virus.

The findings, led by researchers at the University of Bristol and published in the Journal of Biological Chemistry today [2 August], show for the first time that there may be significant differences in specific properties of the viral proteins for the four dengue virus types.

Due to the effects of globalisation, including increased travel and urbanisation of human populations and the expanded geographical distribution of the mosquito vector that is responsible for the transmission of viral infections to millions of people, the number of individuals afflicted with dengue is rising.

Infection with any one of the four types of dengue virus (DENV types 1 - 4) may result in a spectrum of illnesses ranging from dengue fever, a mild flu like illness which causes high fever and joint pains, to the potentially fatal dengue haemorrhagic fever.  Despite intensive research, dengue disease is not wholly understood, and there are no vaccines or anti-viral treatments available that can safely or effectively control the disease.

Dr Andrew Davidson, Senior Virologist and lead researcher from the University of Bristol, and colleagues examined the nuclear localisation properties of the NS5 protein of all four DENV types and found that there are major differences in the cellular localisation of the viral NS5 protein for the four DENV types.

The four types of DENV are genetically distinct. Although they can all cause dengue disease, little is known about how the genetic differences between them may translate into differences in virus replication and pathogenesis.

Previous studies by the team focusing on DENV-2, have shown that the viral NS5 protein is essential for DENV genome replication and is able to modulate the host immune response. As such, the NS5 protein is a key target for the development of anti-viral agents. Importantly, the team also showed that the DENV-2 NS5 protein accumulates in the nucleus during infection which is believed to effect host cell function.

Dr Davidson, Senior Lecturer in Virology, School of Cellular and Molecular Medicine at the University of Bristol, said: “The study shows for the first time that there may be significant differences in specific properties of the viral proteins for the four DENV types. This is important as it impacts on our understanding of viral replication and pathogenesis and the design of anti-viral therapies that are effective against all DENV types.”

Present studies in the laboratory are focused on comprehensively comparing the effects of different DENV types on the host cell, using the state-of-the-art proteomics facilities at the University of Bristol.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

What Causes Immune Cell Migration To Wounds
Study shows triggers which lead immune cells to react and respond to wounded sites.
Friday, May 29, 2015
New Swine Influenza Project to Better Understand Virus Transmission
The Pirbright Institute in Surrey has been awarded £4.4 million to work with researchers from universities on a long-term study on the transmission of swine influenza.
Friday, December 13, 2013
Scientists Find Calcium is the Initial Trigger in Our Immune Response to Healing
For the first time scientists studying the cellular processes underlying the body’s response to healing have revealed how a flash of calcium is the very first step in repairing damaged tissue.
Monday, February 18, 2013
Scientists Find Calcium is the Initial Trigger in our Immune Response to Healing
The findings, published in Current Biology, could lead to new therapies that speed up the healing process following injury or surgery.
Thursday, February 14, 2013
Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos