Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Type of Blood Stem Cell Could Help Solve Platelet Shortage

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Scientists have identified a new type of bone marrow stem cell in mice that is primed to produce large numbers of vital blood-clotting platelets.

The breakthrough may eventually lead to the development of new treatments to restore platelets in patients who have undergone chemotherapy or a bone marrow transplant. The research, published in Nature, was led by the MRC Weatherall Institute of Molecular Medicine (WIMM), at the University of Oxford.

Blood cells are made by a small pool of stem cells in the bone marrow, which replenish the blood at a rate of millions of cells per second. These cells can self-renew (copy themselves) and give rise to all the different cell types that make up the blood system, including white and red blood cells, and platelets.

Platelets help the blood to clot by clumping together at the site of bleeding. Having too few platelets can result in excessive bleeding and is a common side effect in cancer patients, whose natural reservoir of platelets has been destroyed by the disease or by treatment. This can be life-threatening in the weeks immediately following chemotherapy or a bone marrow transplant as it takes time for blood stem cells to replenish platelets to safe levels.

Many patients who undergo these treatments are given platelet transfusions to protect them from bleeding. But donated platelets can only be stored for a few days and demand often outstrips supply. Researchers have therefore been looking for a way to rapidly and durably increase the production of platelets to reduce the risk of bleeding.

Scientists had thought there was just one type of blood stem cell. This study, led by Professors Sten Eirik W Jacobsen and Claus Nerlov, has revealed a previously undiscovered subset of platelet-primed blood stem cells that can self-renew and produce some other cell types that make up the blood, but are particularly geared towards platelet production.

The researchers also found that different subtypes of blood stem cell are organised into a hierarchy, with platelet-primed cells at the top. These platelet-primed cells are able to also replenish other stem cell types that mostly generate the vital blood cells of the immune system.

Transplanting just one platelet-primed stem cell into mice that lacked their own bone marrow was enough to stably restore more than 10 per cent of their platelets, suggesting that these cells can generate a huge number of platelets in a sustainable manner. Future studies by the group will focus on whether or not this can be achieved quickly enough to benefit patients in a clinical transplantation setting.

Professor Sten Eirik Jacobsen from the MRC Molecular Haematology Unit and the Haematopoietic Stem Cell Biology Unit, part of the MRC WIMM at the University of Oxford, said:

“We used to think that there was just one type of blood stem cell that could self-renew and give rise to all the different cell types in the blood. But here we’ve identified a new type of stem cell that is very driven, at a molecular and functional level, towards making platelets.
 
“Now that we know these cells exist, we can start thinking about devising new strategies to enhance platelet output – either by generating and transplanting more of this type of cell into a recipient, or by somehow stimulating their own pool of stem cells to restore platelet levels more quickly. But first we need to see whether we can find the same cells in human tissue and understand more about how they are regulated.”

Professor Alastair Poole, a platelet biologist and member of the MRC’s Molecular and Cellular Medicine Board, which funded the research, said:

“Blood stem cells were the first ever stem cells to be identified by scientists, but there is still a lot we don’t fully understand about how these cells are controlled in the body. The discovery of a distinct class of blood stem cells within the bone marrow adds a great deal to our understanding and sheds light on how platelet generation in the body is regulated.
 
“Since platelets are key to blood clotting and loss of platelets can lead to potentially life-threatening bleeding disorders, this discovery of a potent platelet-generating stem cell in the bone marrow has exciting potential. It will be important to identify these stem cells in human tissue, because if replicated in humans they may hold the key to new treatments that will benefit patients with cancer and other serious platelet disorders.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
Immune Organ Regenerated in Mice
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.
Tuesday, April 08, 2014
Vitamin D Could Provide New and Effective Treatments for Asthma
Vitamin D has the potential to significantly reduce the symptoms of asthma, according to a new study from the Medical Research Council (MRC).
Monday, May 20, 2013
Scientific News
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!