Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Worm's-Eye View of Immunity

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Biology professor Dennis Kim seeks to understand the physiology and evolution of host-microbe interactions by studying a simple worm.

In 1998, scientists published the first complete genome of a multicellular organism — the worm Caenorhabditis elegans. At the same time, new technologies were emerging to help researchers manipulate genes and learn more about their functions.

Around that time, Dennis Kim was looking for a new research project to do during his upcoming postdoctoral fellowship at Massachusetts General Hospital (MGH). He decided to try to take advantage of the new genetic tools for studying C. elegans. In particular, he wanted to delve into what’s called the “innate immune system” — the first line of defense against invaders such as viruses and bacteria.

“It was a jump into a new area for me. We had no idea what we would find,” says Kim, who is now an associate professor of biology at MIT. “By studying worms we can take a much more basic evolutionary perspective on the function of the innate immune system. We think we can learn very basic principles in a simpler host organism and also gain some perspective on the evolution of the mammalian system as well.”

The innate, or nonspecific, immune system evolved very early on in primitive animals including worms and fruit flies. Vertebrate animals, which evolved later, also have a specific immune system, which targets pathogens very precisely with antibodies, killer T cells and other cells.

In vertebrates, the innate immune system identifies pathogens and serves as an early alert system, mobilizing the immune system to launch a more specific reaction. In worms, the innate system is the only defense.

In Kim’s studies of the C. elegans immune system, he chose to investigate how the worm defends itself against Pseudomonas aeruginosa, a bacterium that commonly infects people with suppressed immune systems. He has since identified many genes necessary for innate immunity, most of which are involved in signaling between the cells involved in the immune response.

“A lot of serendipity came into play, as seems to always happen in science,” Kim says. “We were able to find some genes in the worm that are required to protect the worm against pathogenic bacteria. Those genes turned out to be genes also required in humans and mice for innate immune defense.”

Science and medicine

Kim, the son of Korean immigrants, was born in Des Moines, Iowa. When he was 10, his family moved to Covina, Calif., a small city east of Los Angeles. His parents always encouraged him to “find something you love to do.” In high school, Kim was drawn to math, which he continued studying at the University of California at Berkeley while majoring in biophysics.

The summer after his sophomore year, Kim got a job working in a chemistry lab studying the biophysics of photosynthesis. One of his duties was going to the grocery store for bunches of spinach to grind up so the photosynthetic enzymes could be purified. The fresher the spinach, the better the results. “I became the most discriminating buyer of spinach you’ve ever seen,” he says.

During that summer, Kim became absorbed in studying how plants use sunlight to split water to make the oxygen we breathe, and got hooked on doing lab research. Most likely he would have continued studying biophysics exclusively, he says, if not for an accident that occurred after his junior year: While riding his motor scooter near Berkeley, he was hit by a car, fracturing his leg.

Kim spent several months rehabbing the leg, unable to attend his classes. During this time, he was fascinated by how well his doctors were able to heal his injury. “I was really impressed with that. I had no inkling of going to medical school at that time, but through that experience, human health came back into my sphere of thinking,” he says.

After graduating from Berkeley, Kim decided to pursue an MD/PhD at Harvard Medical School. For his PhD in biological chemistry, he studied enzymes involved in bacterial cell-wall synthesis, which are the targets of major classes of antibiotics. After earning his MD, he did an internship and residency in internal medicine at Brigham and Women’s Hospital (BWH) and a fellowship in infectious disease at MGH and BWH.

Although Kim now focuses mainly on lab research and teaching, he still sees patients at MGH. “I just really have always enjoyed trying to take care of sick people,” he says.

Complex interactions


Since arriving at MIT in 2005, Kim has expanded his research to focus on interactions between bacteria and C. elegans and how those interactions influence the worms’ behavior, stress physiology and aging.

For example, worms that eat harmful bacteria will then avoid that type of bacteria. Kim is looking for receptors in worm cells that interact with the molecules produced by the bacteria and trying to identify the genes and molecules involved in the resulting behavioral responses.

Many of the signaling pathways that appear to be involved in these behavioral responses are also found in humans, so Kim believes these studies could also shed light on the physiology of humans — whose bodies contain 10 times more bacterial cells than human cells. “It’s increasingly clear things we do to alter our microbial flora can have a pretty pronounced influence on our physiology,” he says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Recruiting The Entire Immune System To Attack Cancer
Stimulating both major branches of the immune system halts tumor growth more effectively.
Wednesday, April 15, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Watching How Cells Interact
New device allows scientists to glimpse communication between immune cells.
Thursday, January 15, 2015
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
Weapon Fights Drug-Resistant Tumors
A new study from MIT reveals a way to combat recurrent tumors with a drug that makes them more vulnerable to the antibody treatment.
Monday, February 03, 2014
Researchers Use Nanoparticles to Deliver Vaccines to Lungs
Particles that deliver vaccines directly to mucosal surfaces could defend against many infectious diseases.
Tuesday, October 01, 2013
Nanosensors Could Aid Drug Manufacturing
Chemical engineers find that arrays of carbon nanotubes can detect flaws in drugs and help improve production.
Friday, August 23, 2013
Bringing a New Perspective to Infectious Disease
Enlisted in the fight against HIV, MIT engineers and scientists contribute new technology, materials and computational studies.
Thursday, February 07, 2013
Immune Protection from an Unexpected Source
MIT biological engineers find that proteins in mucus help ward off viral infection.
Thursday, April 26, 2012
Scientific News
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
A Leap Forward in Vaccinating Against HIV
A team of scientists has developed an experimental vaccine candidate that successfully stimulates the immune system activity in animal models necessary to stop HIV infection.
MRI Scanners Can Steer Therapeutics to Specific Target Sites
Scientists from the University of Sheffield have discovered MRI scanners, normally used to produce images, can steer cell-based, tumour busting therapies to specific target sites in the body.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!