Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Strategy to Disarm the Dengue Virus Brings New Hope for a Universal Dengue Vaccine

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
A new strategy that cripples the ability of the dengue virus to escape the host immune system has been discovered by A*STAR’s Singapore Immunology Network (SIgN).

This breakthrough strategy opens a door of hope to what may become the world’s first universal dengue vaccine candidate that can give full protection from all four serotypes of the dreadful virus. This research done in collaboration with Singapore’s Novartis Institute of Tropical Diseases (NITD) and Beijing Institute of Microbiology and Epidemiology is published in the PlosPathogens journal, and is also supported by Singapore STOP Dengue Translational and Clinical Research (TCR) Programme grant.

Early studies have shown that a sufficiently weakened virus that is still strong enough to generate protective immune response offers the best hope for an effective vaccine. However, over the years of vaccine development, scientists have learnt that the path to finding a virus of appropriate strength is fraught with challenges. This hurdle is compounded by the complexity of the dengue virus. Even though there are only four different serotypes, the fairly high rates of mutation means the virus evolve constantly, and this contributes to the great diversity of the dengue viruses circulating globally. Furthermore, in some cases, the immune response developed following infection by one of the four dengue viruses appears to increase the risk of severe dengue when the same individual is infected with any of the remaining three viruses. With nearly half the world’s population at risk of dengue infection and an estimated 400 million people getting infected each year, the need for a safe and long-lasting vaccine has never been greater.

The new strategy uncovered in this study overcomes the prevailing challenges of vaccine development by tackling the virus’ ability to ‘hide’ from the host immune system. Dengue virus requires the enzyme called MTase (also known as 2’-O-methyltransferase) to chemically modify its genetic material to escape detection. In this study, the researchers discovered that by introducing a genetic mutation to deactivate the MTase enzyme of the virus, initial cells infected by the weakened MTase mutant virus is immediately recognised as foreign. As a result, the desired outcome of a strong protective immune response is triggered yet at the same time the mutant virus hardly has a chance to spread in the host.

Animal models immunised with the weakened MTase mutant virus were fully protected from a challenge with the normal dengue virus. The researchers went on to demonstrate that the MTase mutant dengue virus cannot infect Aedes mosquitoes. This means that the mutated virus is unable to replicate in the mosquito, and will not be able to spread through mosquitoes into our natural environment. Taken together, the results confirmed that MTase mutant dengue virus is potentially a safe vaccine approach for developing a universal dengue vaccine that protects from all four serotypes.

The team leader, Dr Katja Fink from SIgN said, “There is still no clinically approved vaccine or specific treatment available for dengue, so we are very encouraged by the positive results with this novel vaccine strategy. Our next step will be to work on a vaccine formulation that will confer full protection from all four serotypes with a single injection. If this proves to be safe in humans, it can be a major breakthrough for the dengue vaccine field.”

Associate Professor Leo Yee Sin, Clinical Director of Communicable Diseases Centre and Institute of Infectious Disease and Epidemiology at Tan Tock Seng Hospital who heads the Singapore STOP Dengue Translational and Clinical Research (TCR) Programme said, “We are into the seventh decade of dengue vaccine development, this indeed is an exciting breakthrough that brings us a step closer to an effective vaccine.”

Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, “Dengue is a major public health problem in many of the tropical countries. We are very delighted that our collaborative efforts with colleagues in Singapore and China have made a promising step towards a cost-effective and safe dengue vaccine to combat the growing threat of dengue worldwide.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
A*STAR, NUS and NUH Join Forces to Understand Immune Erosion in Elderly
The collaboration with Sanofi Pasteur aims to study the loss of immunity and consequent reduced responsiveness to vaccination in elderly.
Friday, February 14, 2014
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Novel Mechanism Discovered in First Line of Immune Defence
Discovery opens doors to developing new therapies to eradicate tumour cells and combat infections.
Tuesday, September 10, 2013
Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection
A*STAR's SIgN have made great strides in the battle against the infectious disease.
Monday, September 24, 2012
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!